Concurrent electrode-electrolyte interfaces engineering via nano-Si3N4 additive for high-rate, high-voltage lithium metal batteries

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jinuk Kim, Dong Gyu Lee, Ju Hyun Lee, Saehun Kim, Cheol-Young Park, Jiyoon Lee, Hyeokjin Kwon, Hannah Cho, Jungyoon Lee, Donghyeok Son, Hee-Tak Kim, Nam-Soon Choi, Tae Kyung Lee, Jinwoo Lee
{"title":"Concurrent electrode-electrolyte interfaces engineering via nano-Si3N4 additive for high-rate, high-voltage lithium metal batteries","authors":"Jinuk Kim, Dong Gyu Lee, Ju Hyun Lee, Saehun Kim, Cheol-Young Park, Jiyoon Lee, Hyeokjin Kwon, Hannah Cho, Jungyoon Lee, Donghyeok Son, Hee-Tak Kim, Nam-Soon Choi, Tae Kyung Lee, Jinwoo Lee","doi":"10.1039/d4ee03862b","DOIUrl":null,"url":null,"abstract":"Electrolyte engineering is emerging as a key strategy for enhancing the cycle life of lithium metal batteries (LMBs). Fluorinated electrolytes have dramatically extended cycle life; however, intractable challenges regarding the rate capability and fluorine overuse persist. Here, we introduce a lithiophilic, solvent-interactive, and fluorine-free nano-Si<small><sub>3</sub></small>N<small><sub>4</sub></small> additive that facilitates the fine-tuning of weak Li<small><sup>+</sup></small> solvation to form inorganic-rich solid-electrolyte interphase (SEI) layers. Additionally, the alloying and conversion reactions between nano-Si<small><sub>3</sub></small>N<small><sub>4</sub></small> and Li generated a fast Li<small><sup>+</sup></small>-conductive SEI, overcoming the poor rate performance of weakly solvating electrolytes. Simultaneously, nano-Si<small><sub>3</sub></small>N<small><sub>4</sub></small> interacts with ethylene carbonate (EC), minimizing hydrogen (H)-transfer reactions and scavenging HF, thus increasing the high-voltage tolerance. Consequently, nano-Si<small><sub>3</sub></small>N<small><sub>4</sub></small> extends the cyclability of commercial carbonate-based electrolyte in 360 Wh kg<small><sup>-1</sup></small>-level LiǁLiNi<small><sub>0.8</sub></small>Co<small><sub>0.1</sub></small>Mn<small><sub>0.1</sub></small>O<small><sub>2</sub></small> (NCM811) pouch-cells, resulting in 74% capacity retention after 100 cycles, whereas failure occurred without it. Our study provides an in-depth understanding of the working mechanisms of suspension electrolytes through comprehensive analysis.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"16 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee03862b","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrolyte engineering is emerging as a key strategy for enhancing the cycle life of lithium metal batteries (LMBs). Fluorinated electrolytes have dramatically extended cycle life; however, intractable challenges regarding the rate capability and fluorine overuse persist. Here, we introduce a lithiophilic, solvent-interactive, and fluorine-free nano-Si3N4 additive that facilitates the fine-tuning of weak Li+ solvation to form inorganic-rich solid-electrolyte interphase (SEI) layers. Additionally, the alloying and conversion reactions between nano-Si3N4 and Li generated a fast Li+-conductive SEI, overcoming the poor rate performance of weakly solvating electrolytes. Simultaneously, nano-Si3N4 interacts with ethylene carbonate (EC), minimizing hydrogen (H)-transfer reactions and scavenging HF, thus increasing the high-voltage tolerance. Consequently, nano-Si3N4 extends the cyclability of commercial carbonate-based electrolyte in 360 Wh kg-1-level LiǁLiNi0.8Co0.1Mn0.1O2 (NCM811) pouch-cells, resulting in 74% capacity retention after 100 cycles, whereas failure occurred without it. Our study provides an in-depth understanding of the working mechanisms of suspension electrolytes through comprehensive analysis.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信