Atomically Engineered Trimetallic Nanoclusters Toward Enhanced Photoluminescence and Photoinitiation Activity

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xu Liu, Jin Tang, Fangming Zhao, Meng Zhou, Siyang Ye, Daocheng Hong, Yuxi Tian, Yue Zhao, Shuangshuang Huang, Fan Tian, Tongxin Song, Xiao Cai, Yiqi Tian, Wei Zhang, Qi Li, Yan Zhu
{"title":"Atomically Engineered Trimetallic Nanoclusters Toward Enhanced Photoluminescence and Photoinitiation Activity","authors":"Xu Liu, Jin Tang, Fangming Zhao, Meng Zhou, Siyang Ye, Daocheng Hong, Yuxi Tian, Yue Zhao, Shuangshuang Huang, Fan Tian, Tongxin Song, Xiao Cai, Yiqi Tian, Wei Zhang, Qi Li, Yan Zhu","doi":"10.1002/adma.202417984","DOIUrl":null,"url":null,"abstract":"Precise doping is of vital significance for atomic engineering and the establishment of structure-property relationships in nanocluster (NC) chemistry. Herein, two novel trimetallic MAu<sub>18</sub>Cd<sub>3</sub> (M = Pd/Pt) NCs that are derived from M-doped Au<sub>25</sub> templates of MAu<sub>24</sub> are reported, in which the central doping of M atom and the surface-motif doping of Cd atoms are concurrently achieved. Compared to the original templates, Cd-induced surface engineering enhances the rigidity of the structural framework and enlarges the HOMO-LUMO gaps of the MAu<sub>18</sub>Cd<sub>3</sub>, significantly improving photoluminescent efficiency by suppressing nonradiative relaxation. The critical role of the central M (Pd/Pt) dopant in photoluminescence, which regulates the rate of radiative decay of excited-state electrons, has also been substantiated. More notably, the doped case of PtAu<sub>18</sub>Cd<sub>3</sub> exhibits excellent photoinitiation activity in 3D two-photon printing with a high resolution of ≈140 nm, which may be attributed to the prolonged excited state. Overall, this work provides a generalized routine for the precise synthesis of multi-metal NCs with concurrent enhancements in photoluminescence and photoinitiation activity, which is expected to stimulate further research for the design and preparation of multi-functional, multi-metal NCs.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"29 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202417984","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Precise doping is of vital significance for atomic engineering and the establishment of structure-property relationships in nanocluster (NC) chemistry. Herein, two novel trimetallic MAu18Cd3 (M = Pd/Pt) NCs that are derived from M-doped Au25 templates of MAu24 are reported, in which the central doping of M atom and the surface-motif doping of Cd atoms are concurrently achieved. Compared to the original templates, Cd-induced surface engineering enhances the rigidity of the structural framework and enlarges the HOMO-LUMO gaps of the MAu18Cd3, significantly improving photoluminescent efficiency by suppressing nonradiative relaxation. The critical role of the central M (Pd/Pt) dopant in photoluminescence, which regulates the rate of radiative decay of excited-state electrons, has also been substantiated. More notably, the doped case of PtAu18Cd3 exhibits excellent photoinitiation activity in 3D two-photon printing with a high resolution of ≈140 nm, which may be attributed to the prolonged excited state. Overall, this work provides a generalized routine for the precise synthesis of multi-metal NCs with concurrent enhancements in photoluminescence and photoinitiation activity, which is expected to stimulate further research for the design and preparation of multi-functional, multi-metal NCs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信