Molecularly Functionalized Biomass Hydrogels for Sustainable Atmospheric Water Harvesting

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Weixin Guan, Yaxuan Zhao, Chuxin Lei, Yuyang Wang, Kai Wu, Guihua Yu
{"title":"Molecularly Functionalized Biomass Hydrogels for Sustainable Atmospheric Water Harvesting","authors":"Weixin Guan, Yaxuan Zhao, Chuxin Lei, Yuyang Wang, Kai Wu, Guihua Yu","doi":"10.1002/adma.202420319","DOIUrl":null,"url":null,"abstract":"Atmospheric water harvesting (AWH) offers a promising pathway to alleviate global water scarcity, highlighting the need for environmentally responsible sorbent materials. In this context, this research introduces a universal strategy for transforming natural polysaccharides into effective hydrogel sorbents, demonstrated with cellulose, starch, and chitosan. The methodology unites alkylation to graft thermoresponsive groups, thereby enhancing water processability and enabling energy-efficient water release at lower temperatures, with the integration of zwitterionic groups to ensure stable and effective water sorption. The molecularly functionalized cellulose hydrogel, exemplifying our approach, shows favorable water uptake of 0.86–1.32 g g<sup>−1</sup> at 15–30% relative humidity (RH), along with efficient desorption, releasing 95% of captured water at 60 °C. Outdoor tests highlight the water production rate of up to 14.19 kg kg<sup>−1</sup> day<sup>−1</sup> by electrical heating. The proposed molecular engineering methodology, which expands the range of raw materials by leveraging abundant biomass feedstock, has the potential to advance sorbent production and scalable AWH technologies, contributing to sustainable solutions.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"22 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202420319","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Atmospheric water harvesting (AWH) offers a promising pathway to alleviate global water scarcity, highlighting the need for environmentally responsible sorbent materials. In this context, this research introduces a universal strategy for transforming natural polysaccharides into effective hydrogel sorbents, demonstrated with cellulose, starch, and chitosan. The methodology unites alkylation to graft thermoresponsive groups, thereby enhancing water processability and enabling energy-efficient water release at lower temperatures, with the integration of zwitterionic groups to ensure stable and effective water sorption. The molecularly functionalized cellulose hydrogel, exemplifying our approach, shows favorable water uptake of 0.86–1.32 g g−1 at 15–30% relative humidity (RH), along with efficient desorption, releasing 95% of captured water at 60 °C. Outdoor tests highlight the water production rate of up to 14.19 kg kg−1 day−1 by electrical heating. The proposed molecular engineering methodology, which expands the range of raw materials by leveraging abundant biomass feedstock, has the potential to advance sorbent production and scalable AWH technologies, contributing to sustainable solutions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信