Benefits of refined 10-day effective angular momentum forecasts for earth rotation parameter prediction

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
R. Dill, L. Stumpe, J. Saynisch-Wagner, M. Thomas, H. Dobslaw
{"title":"Benefits of refined 10-day effective angular momentum forecasts for earth rotation parameter prediction","authors":"R. Dill, L. Stumpe, J. Saynisch-Wagner, M. Thomas, H. Dobslaw","doi":"10.1007/s00190-025-01941-x","DOIUrl":null,"url":null,"abstract":"<p>Effective angular momentum (EAM) forecasts are widely used as an important input for predicting both polar motion and dUT1. So far, model predictions for atmosphere, ocean, and terrestrial hydrosphere utilized in Earth rotation research reach only 6-days into the future. GFZ’s oceanic and land-surface model forecasts are forced with operational 6-day high-resolution deterministic numerical weather predictions provided by the European Centre for Medium-range Weather Forecasts. Those atmospheric forecasts extend also further into the future with a reduced sampling rate of just 6 h but the prediction skill decreases rapidly after roughly one week. To decide about publishing 10-day instead of 6-day model-based EAM forecasts, we generated a test set of 454 individual 10-day forecasts and used it with GFZ’s EAM Predictor method to calculate Earth rotation predictions. Using 10-day instead of 6-day EAM forecasts leads to slight improvements in y-pole and dUT1 predictions for 10 to 30 days ahead. By introducing additional neural network models trained on the errors of the EAM forecasts when compared to their subsequently available analysis runs, Earth rotation prediction can be enhanced even further. A reduction of the mean absolute errors for polar motion and length-of-day prediction at a forecast horizon of 10 days of 26.8% in x-pole, 15.5% in y-pole, 27.6% in dUT1, and 47.1% in <span>\\(\\Delta \\)</span>LOD is achieved. This test application successfully demonstrates the potential of the extended EAM forecasts for Earth rotation prediction although the success rate has to be further improved to arrive at robust routine predictions. GFZ publishes from October 2024 onwards raw uncorrected 10-day instead of 6-day EAM forecasts at www.gfz-potsdam.de/en/esmdata for the individual contributions of atmosphere, ocean, and terrestrial hydrosphere. Users interested in the summarized effect of all subsystems are advised to use the 90-day combined EAM forecast product that also makes use of the presented corrections to the EAM forecasts.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"16 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-025-01941-x","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Effective angular momentum (EAM) forecasts are widely used as an important input for predicting both polar motion and dUT1. So far, model predictions for atmosphere, ocean, and terrestrial hydrosphere utilized in Earth rotation research reach only 6-days into the future. GFZ’s oceanic and land-surface model forecasts are forced with operational 6-day high-resolution deterministic numerical weather predictions provided by the European Centre for Medium-range Weather Forecasts. Those atmospheric forecasts extend also further into the future with a reduced sampling rate of just 6 h but the prediction skill decreases rapidly after roughly one week. To decide about publishing 10-day instead of 6-day model-based EAM forecasts, we generated a test set of 454 individual 10-day forecasts and used it with GFZ’s EAM Predictor method to calculate Earth rotation predictions. Using 10-day instead of 6-day EAM forecasts leads to slight improvements in y-pole and dUT1 predictions for 10 to 30 days ahead. By introducing additional neural network models trained on the errors of the EAM forecasts when compared to their subsequently available analysis runs, Earth rotation prediction can be enhanced even further. A reduction of the mean absolute errors for polar motion and length-of-day prediction at a forecast horizon of 10 days of 26.8% in x-pole, 15.5% in y-pole, 27.6% in dUT1, and 47.1% in \(\Delta \)LOD is achieved. This test application successfully demonstrates the potential of the extended EAM forecasts for Earth rotation prediction although the success rate has to be further improved to arrive at robust routine predictions. GFZ publishes from October 2024 onwards raw uncorrected 10-day instead of 6-day EAM forecasts at www.gfz-potsdam.de/en/esmdata for the individual contributions of atmosphere, ocean, and terrestrial hydrosphere. Users interested in the summarized effect of all subsystems are advised to use the 90-day combined EAM forecast product that also makes use of the presented corrections to the EAM forecasts.

精细化10天有效角动量预报对地球自转参数预报的好处
有效角动量(EAM)预报作为预测极移和dUT1的重要输入被广泛使用。到目前为止,用于地球自转研究的大气、海洋和陆地水圈的模式预测只能达到未来6天的水平。GFZ的海洋和陆地模式预报采用欧洲中期天气预报中心提供的6天高分辨率确定性数值天气预报。这些大气预报还可以进一步扩展到未来,采样率降低到仅6小时,但预测技能在大约一周后迅速下降。为了决定发布10天而不是6天的基于模型的EAM预测,我们生成了一个由454个单独的10天预测组成的测试集,并将其与GFZ的EAM Predictor方法一起使用,以计算地球自转预测。使用10天而不是6天的EAM预测可以略微改善未来10至30天的y极和dUT1预测。通过引入额外的神经网络模型,将EAM预测的误差与随后可用的分析运行进行比较,可以进一步增强地球自转预测。在10天的预报范围内,极移和日长预报的平均绝对误差为26.8% in x-pole, 15.5% in y-pole, 27.6% in dUT1, and 47.1% in \(\Delta \)LOD is achieved. This test application successfully demonstrates the potential of the extended EAM forecasts for Earth rotation prediction although the success rate has to be further improved to arrive at robust routine predictions. GFZ publishes from October 2024 onwards raw uncorrected 10-day instead of 6-day EAM forecasts at www.gfz-potsdam.de/en/esmdata for the individual contributions of atmosphere, ocean, and terrestrial hydrosphere. Users interested in the summarized effect of all subsystems are advised to use the 90-day combined EAM forecast product that also makes use of the presented corrections to the EAM forecasts.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geodesy
Journal of Geodesy 地学-地球化学与地球物理
CiteScore
8.60
自引率
9.10%
发文量
85
审稿时长
9 months
期刊介绍: The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as: -Positioning -Reference frame -Geodetic networks -Modeling and quality control -Space geodesy -Remote sensing -Gravity fields -Geodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信