Mengzhen Zhao, Wen Zhong, Jiaheng Chen, Yuqing He, Zhibin Zhou, Dan Deng, Suai Lin, Haoxin Cheng, Xiaotian Hu, Xiaolei Wang
{"title":"A Fluorescence/Colorimetric Synergistic-Enhanced Type-I Heterostructured MOF@QDs for Both Multi-Depth Food-Freshness Prediction and Extra Preservation","authors":"Mengzhen Zhao, Wen Zhong, Jiaheng Chen, Yuqing He, Zhibin Zhou, Dan Deng, Suai Lin, Haoxin Cheng, Xiaotian Hu, Xiaolei Wang","doi":"10.1002/smll.202410401","DOIUrl":null,"url":null,"abstract":"<p>Spoiled food has significantly impacted the global economy and public health, which increases worldwide concern about monitoring and preserving food freshness. Herein, a multi-functional type-I heterojunction (Eu@ZMC) is designed by europium metal-organic framework (EuMOF), zinc oxide quantum dots (ZnO QDs), and chlorogenic acid (CGA). Eu@ZMC achieves ratiometric fluorescent/colorimetric sensing of pH and biogenic amines to detect freshness. Besides, a paper-based platform (PEu@ZMC) is prepared and can detect histamine with the LOD of 0.0142 and 0.0136 µg mL<sup>−1</sup> in fluorescent and colorimetric modes, respectively. An advanced OR/NOT-gate logic device is further constructed to distinguish freshness into three levels (fresh, less fresh, and spoiled). This dual-mode sensor is synergistic-enhanced by the energy transfer triggered by ZnO QDs-promoted colorimetry and the type-I heterostructure of fluorescent EuMOF and ZnO QDs. The release of low-toxic zinc ions inhibits various bacterial growth, including <i>Salmonella typhimurium</i>. According to raw fish evaluation, Eu@ZMC not only effectively monitors spoilage externally and internally aligning with a commercial kit, but also reduces spoilage speed, which cannot be achieved through the classical detection strategy. This original work provides a simple, convenient, and reliable method for multi-depth and real-time visual food monitoring with extract freshness preservation, contributing to economic benefits and human health assurance.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 11","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202410401","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Spoiled food has significantly impacted the global economy and public health, which increases worldwide concern about monitoring and preserving food freshness. Herein, a multi-functional type-I heterojunction (Eu@ZMC) is designed by europium metal-organic framework (EuMOF), zinc oxide quantum dots (ZnO QDs), and chlorogenic acid (CGA). Eu@ZMC achieves ratiometric fluorescent/colorimetric sensing of pH and biogenic amines to detect freshness. Besides, a paper-based platform (PEu@ZMC) is prepared and can detect histamine with the LOD of 0.0142 and 0.0136 µg mL−1 in fluorescent and colorimetric modes, respectively. An advanced OR/NOT-gate logic device is further constructed to distinguish freshness into three levels (fresh, less fresh, and spoiled). This dual-mode sensor is synergistic-enhanced by the energy transfer triggered by ZnO QDs-promoted colorimetry and the type-I heterostructure of fluorescent EuMOF and ZnO QDs. The release of low-toxic zinc ions inhibits various bacterial growth, including Salmonella typhimurium. According to raw fish evaluation, Eu@ZMC not only effectively monitors spoilage externally and internally aligning with a commercial kit, but also reduces spoilage speed, which cannot be achieved through the classical detection strategy. This original work provides a simple, convenient, and reliable method for multi-depth and real-time visual food monitoring with extract freshness preservation, contributing to economic benefits and human health assurance.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.