Investigation of κ-Carrageenan’s Ice-Binding Properties Using Molecular Dynamics Simulation

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Julian Gerhäuser, Volker Gaukel
{"title":"Investigation of κ-Carrageenan’s Ice-Binding Properties Using Molecular Dynamics Simulation","authors":"Julian Gerhäuser, Volker Gaukel","doi":"10.1021/acs.langmuir.4c04461","DOIUrl":null,"url":null,"abstract":"Recrystallization of ice crystals during storage of frozen food, cells, or medical samples causes serious damage to the stored material. To mitigate this damage, additives such as κ-carrageenan, a polysaccharide derived from algae, can be employed. Experimental results demonstrated that κ-carrageenan strongly inhibits ice recrystallization and alters the ice crystal morphology, suggesting ice-binding properties. However, a binding of κ-carrageenan to ice crystals has not yet been shown, and the underlying mechanism of its recrystallization inhibition activity remains unclear. In this study, molecular dynamics simulations using different κ-carrageenan molecules and ice planes were performed to shed light on this. The results revealed that κ-carrageenan is able to interact with the basal plane and primary and secondary prism planes, but the binding appears to be reversible, at least for the investigated molecular sizes. In addition, the formation of a double helix did not affect the binding affinity. Hydrogen bond formation and the integration of κ-carrageenan’s oxygen atoms into the ice lattice structure facilitate the interaction with the ice crystal. These findings provide further insights into the recrystallization inhibition of polysaccharides and foster the tailored design of effective freeze-protection molecules.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"14 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04461","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recrystallization of ice crystals during storage of frozen food, cells, or medical samples causes serious damage to the stored material. To mitigate this damage, additives such as κ-carrageenan, a polysaccharide derived from algae, can be employed. Experimental results demonstrated that κ-carrageenan strongly inhibits ice recrystallization and alters the ice crystal morphology, suggesting ice-binding properties. However, a binding of κ-carrageenan to ice crystals has not yet been shown, and the underlying mechanism of its recrystallization inhibition activity remains unclear. In this study, molecular dynamics simulations using different κ-carrageenan molecules and ice planes were performed to shed light on this. The results revealed that κ-carrageenan is able to interact with the basal plane and primary and secondary prism planes, but the binding appears to be reversible, at least for the investigated molecular sizes. In addition, the formation of a double helix did not affect the binding affinity. Hydrogen bond formation and the integration of κ-carrageenan’s oxygen atoms into the ice lattice structure facilitate the interaction with the ice crystal. These findings provide further insights into the recrystallization inhibition of polysaccharides and foster the tailored design of effective freeze-protection molecules.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信