External Li supply reshapes Li deficiency and lifetime limit of batteries

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2025-02-12 DOI:10.1038/s41586-024-08465-y
Shu Chen, Guanbin Wu, Haibo Jiang, Jifeng Wang, Tiantian Chen, Chenyang Han, Wenwen Wang, Rongchen Yang, Jiahua Zhao, Zhihang Tang, Xiaocheng Gong, Chuanfa Li, Mengyao Zhu, Kun Zhang, Yifei Xu, Ying Wang, Zhe Hu, Peining Chen, Bingjie Wang, Kai Zhang, Yongyao Xia, Huisheng Peng, Yue Gao
{"title":"External Li supply reshapes Li deficiency and lifetime limit of batteries","authors":"Shu Chen, Guanbin Wu, Haibo Jiang, Jifeng Wang, Tiantian Chen, Chenyang Han, Wenwen Wang, Rongchen Yang, Jiahua Zhao, Zhihang Tang, Xiaocheng Gong, Chuanfa Li, Mengyao Zhu, Kun Zhang, Yifei Xu, Ying Wang, Zhe Hu, Peining Chen, Bingjie Wang, Kai Zhang, Yongyao Xia, Huisheng Peng, Yue Gao","doi":"10.1038/s41586-024-08465-y","DOIUrl":null,"url":null,"abstract":"<p>Lithium (Li) ions are central to the energy storing functionality of rechargeable batteries<sup>1</sup>. Present technology relies on sophisticated Li-inclusive electrode materials to provide Li ions and exactingly protect them to ensure a decent lifetime<sup>2</sup>. Li-deficient materials are thus excluded from battery design, and the battery fails when active Li ions are consumed<sup>3</sup>. Our study breaks this limit by means of a cell-level Li supply strategy. This involves externally adding an organic Li salt into an assembled cell, which decomposes during cell formation, liberating Li ions and expelling organic ligands as gases. This non-invasive and rapid process preserves cell integrity without necessitating disassembly. We leveraged machine learning to discover such functional salts and identified lithium trifluoromethanesulfinate (LiSO<sub>2</sub>CF<sub>3</sub>) with optimal electrochemical activity, potential, product formation, electrolyte solubility and specific capacity. As a proof-of-concept, we demonstrated a 3.0 V, 1,192 Wh kg<sup>−1</sup> Li-free cathode, chromium oxide, in the anode-less cell, as well as an organic sulfurized polyacrylonitrile cathode incorporated in a 388 Wh kg<sup>−1</sup> pouch cell with a 440-cycle life. These systems exhibit improved energy density, enhanced sustainability and reduced cost compared with conventional Li-ion batteries. Furthermore, the lifetime of commercial LiFePO<sub>4</sub> batteries was extended by at least an order of magnitude. With repeated external Li supplies, a commercial graphite|LiFePO<sub>4</sub> cell displayed a capacity retention of 96.0% after 11,818 cycles.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"29 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08465-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium (Li) ions are central to the energy storing functionality of rechargeable batteries1. Present technology relies on sophisticated Li-inclusive electrode materials to provide Li ions and exactingly protect them to ensure a decent lifetime2. Li-deficient materials are thus excluded from battery design, and the battery fails when active Li ions are consumed3. Our study breaks this limit by means of a cell-level Li supply strategy. This involves externally adding an organic Li salt into an assembled cell, which decomposes during cell formation, liberating Li ions and expelling organic ligands as gases. This non-invasive and rapid process preserves cell integrity without necessitating disassembly. We leveraged machine learning to discover such functional salts and identified lithium trifluoromethanesulfinate (LiSO2CF3) with optimal electrochemical activity, potential, product formation, electrolyte solubility and specific capacity. As a proof-of-concept, we demonstrated a 3.0 V, 1,192 Wh kg−1 Li-free cathode, chromium oxide, in the anode-less cell, as well as an organic sulfurized polyacrylonitrile cathode incorporated in a 388 Wh kg−1 pouch cell with a 440-cycle life. These systems exhibit improved energy density, enhanced sustainability and reduced cost compared with conventional Li-ion batteries. Furthermore, the lifetime of commercial LiFePO4 batteries was extended by at least an order of magnitude. With repeated external Li supplies, a commercial graphite|LiFePO4 cell displayed a capacity retention of 96.0% after 11,818 cycles.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信