求助PDF
{"title":"Calcium beats for better crops","authors":"Guillaume Tena","doi":"10.1038/s41477-025-01935-9","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 2","pages":"148-148"},"PeriodicalIF":15.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41477-025-01935-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
引用
批量引用
钙有利于更好的作物
研究人员描述了两个CNGC15同源物的显性突变,这些突变增强了根瘤共生和营养获取。由此产生的改变位于第一个跨膜螺旋,并可能诱发影响通道打开的构象重排。因此,即使没有Nod因子,也可以在细胞核中观察到本构低频钙振荡。高频振荡的存在取决于DMI1。换句话说,CNGC15产生钙振荡,但其频率由DMI1调节。CNGC15是心脏,DMI1是起搏器。令人惊讶的是,转录组学分析表明,自发的低频钙振荡并没有启动通常为共生根系做准备的一整套信号基因。只有一个子集——主要是苯丙类生物合成基因——被诱导。代谢组学分析证实了根类黄酮的输出增加,这是已知的刺激两种类型的内共生相互作用,解释了表型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。