{"title":"Epigenetic regulation of angiogenesis and its therapeutics.","authors":"Dong Kyu Choi","doi":"10.1186/s44342-025-00038-3","DOIUrl":null,"url":null,"abstract":"<p><p>Angiogenesis, the formation of new blood vessels from preexisting ones, is essential for normal development, wound healing, and tissue repair. However, dysregulated angiogenesis is implicated in various pathological conditions, including cancer, diabetic retinopathy, and atherosclerosis. Epigenetic modifications, including DNA methylation, histone modification, and noncoding RNAs (e.g., miRNAs), play a crucial role in regulating angiogenic gene expression without altering the underlying DNA sequence. These modifications tightly regulate the balance between pro-angiogenic and anti-angiogenic factors, thereby influencing endothelial cell proliferation, migration, and tube formation. In recent years, epigenetic drugs, such as DNA methyltransferase inhibitors (e.g., azacitidine, decitabine), histone deacetylase inhibitors (e.g., vorinostat, romidepsin), and BET inhibitors (e.g., JQ1), have emerged as promising therapeutic strategies for targeting abnormal angiogenesis. These agents modulate gene expression patterns, reactivating silenced tumor suppressor genes while downregulating pro-angiogenic signaling pathways. Additionally, miRNA modulators, such as MRG-110 and MRG-201, provide precise regulation of angiogenesis-related pathways, demonstrating significant therapeutic potential in preclinical models. This review underscores the intricate interplay between epigenetic regulation and angiogenesis, highlighting key mechanisms and therapeutic applications. Advancing our understanding of these processes will enable the development of more effective and targeted epigenetic therapies for angiogenesis-related diseases, paving the way for innovative clinical interventions.</p>","PeriodicalId":94288,"journal":{"name":"Genomics & informatics","volume":"23 1","pages":"4"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817428/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics & informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s44342-025-00038-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Angiogenesis, the formation of new blood vessels from preexisting ones, is essential for normal development, wound healing, and tissue repair. However, dysregulated angiogenesis is implicated in various pathological conditions, including cancer, diabetic retinopathy, and atherosclerosis. Epigenetic modifications, including DNA methylation, histone modification, and noncoding RNAs (e.g., miRNAs), play a crucial role in regulating angiogenic gene expression without altering the underlying DNA sequence. These modifications tightly regulate the balance between pro-angiogenic and anti-angiogenic factors, thereby influencing endothelial cell proliferation, migration, and tube formation. In recent years, epigenetic drugs, such as DNA methyltransferase inhibitors (e.g., azacitidine, decitabine), histone deacetylase inhibitors (e.g., vorinostat, romidepsin), and BET inhibitors (e.g., JQ1), have emerged as promising therapeutic strategies for targeting abnormal angiogenesis. These agents modulate gene expression patterns, reactivating silenced tumor suppressor genes while downregulating pro-angiogenic signaling pathways. Additionally, miRNA modulators, such as MRG-110 and MRG-201, provide precise regulation of angiogenesis-related pathways, demonstrating significant therapeutic potential in preclinical models. This review underscores the intricate interplay between epigenetic regulation and angiogenesis, highlighting key mechanisms and therapeutic applications. Advancing our understanding of these processes will enable the development of more effective and targeted epigenetic therapies for angiogenesis-related diseases, paving the way for innovative clinical interventions.