Deciphering single-cell genomic architecture: insights into cellular heterogeneity and regulatory dynamics.

Byunghee Kang, Hyeonji Lee, Tae-Young Roh
{"title":"Deciphering single-cell genomic architecture: insights into cellular heterogeneity and regulatory dynamics.","authors":"Byunghee Kang, Hyeonji Lee, Tae-Young Roh","doi":"10.1186/s44342-025-00037-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The genomic architecture of eukaryotes exhibits dynamic spatial and temporal changes, enabling cellular processes critical for maintaining viability and functional diversity. Recent advances in sequencing technologies have facilitated the dissection of genomic architecture and functional activity at single-cell resolution, moving beyond the averaged signals typically derived from bulk cell analyses.</p><p><strong>Main body: </strong>The advent of single-cell genomics and epigenomics has yielded transformative insights into cellular heterogeneity, behavior, and biological complexity with unparalleled genomic resolution and reproducibility. This review summarizes recent progress in the characterization of genomic architecture at the single-cell level, emphasizing the impact of structural variation and chromatin organization on gene regulatory networks and cellular identity.</p><p><strong>Conclusion: </strong>Future directions in single-cell genomics and high-resolution epigenomic methodologies are explored, focusing on emerging challenges and potential impacts on the understanding of cellular states, regulatory dynamics, and the intricate mechanisms driving cellular function and diversity. Future perspectives on the challenges and potential implications of single-cell genomics, along with high-resolution genomic and epigenomic technologies for understanding cellular states and regulatory dynamics, are also discussed.</p>","PeriodicalId":94288,"journal":{"name":"Genomics & informatics","volume":"23 1","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817879/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics & informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s44342-025-00037-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The genomic architecture of eukaryotes exhibits dynamic spatial and temporal changes, enabling cellular processes critical for maintaining viability and functional diversity. Recent advances in sequencing technologies have facilitated the dissection of genomic architecture and functional activity at single-cell resolution, moving beyond the averaged signals typically derived from bulk cell analyses.

Main body: The advent of single-cell genomics and epigenomics has yielded transformative insights into cellular heterogeneity, behavior, and biological complexity with unparalleled genomic resolution and reproducibility. This review summarizes recent progress in the characterization of genomic architecture at the single-cell level, emphasizing the impact of structural variation and chromatin organization on gene regulatory networks and cellular identity.

Conclusion: Future directions in single-cell genomics and high-resolution epigenomic methodologies are explored, focusing on emerging challenges and potential impacts on the understanding of cellular states, regulatory dynamics, and the intricate mechanisms driving cellular function and diversity. Future perspectives on the challenges and potential implications of single-cell genomics, along with high-resolution genomic and epigenomic technologies for understanding cellular states and regulatory dynamics, are also discussed.

破译单细胞基因组结构:洞察细胞异质性和调控动力学。
背景:真核生物的基因组结构表现出动态的空间和时间变化,使细胞过程对维持活力和功能多样性至关重要。测序技术的最新进展促进了在单细胞分辨率上对基因组结构和功能活动的解剖,超越了通常来自大细胞分析的平均信号。正文:单细胞基因组学和表观基因组学的出现,对细胞异质性、行为和生物复杂性产生了革命性的见解,具有无与伦比的基因组分辨率和可重复性。本文综述了单细胞水平基因组结构表征的最新进展,强调了结构变异和染色质组织对基因调控网络和细胞身份的影响。结论:探讨了单细胞基因组学和高分辨率表观基因组学方法的未来发展方向,重点关注对细胞状态、调控动力学以及驱动细胞功能和多样性的复杂机制的理解的新挑战和潜在影响。还讨论了单细胞基因组学的挑战和潜在影响的未来前景,以及用于理解细胞状态和调节动力学的高分辨率基因组学和表观基因组学技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信