A feasibility study on using soft insoles for estimating 3D ground reaction forces with incorporated 3D-printed foam-like sensors.

IF 3.4 Q2 ENGINEERING, BIOMEDICAL
Wearable technologies Pub Date : 2025-01-23 eCollection Date: 2025-01-01 DOI:10.1017/wtc.2024.23
Nick Willemstein, Saivimal Sridar, Herman van der Kooij, Ali Sadeghi
{"title":"A feasibility study on using soft insoles for estimating 3D ground reaction forces with incorporated 3D-printed foam-like sensors.","authors":"Nick Willemstein, Saivimal Sridar, Herman van der Kooij, Ali Sadeghi","doi":"10.1017/wtc.2024.23","DOIUrl":null,"url":null,"abstract":"<p><p>Sensorized insoles provide a tool for gait studies and health monitoring during daily life. For users to accept such insoles, they need to be comfortable and lightweight. Previous research has demonstrated that sensorized insoles can estimate ground reaction forces (GRFs). However, these insoles often assemble commercial components restricting design freedom and customization. Within this work, we incorporated four 3D-printed soft foam-like sensors to sensorize an insole. To test the insoles, we had nine participants walk on an instrumented treadmill. The four sensors behaved in line with the expected change in pressure distribution during the gait cycle. A subset of this data was used to identify personalized Hammerstein-Wiener (HW) models to estimate the 3D GRFs while the others were used for validation. In addition, the identified HW models showed the best estimation performance (on average root mean squared (RMS) error 9.3%, =0.85 and mean absolute error (MAE) 7%) of the vertical, mediolateral, and anteroposterior GRFs, thereby showing that these sensors can estimate the resulting 3D force reasonably well. These results were comparable to or outperformed other works that used commercial force-sensing resistors with machine learning. Four participants participated in three trials over a week, which showed a decrease in estimation performance over time but stayed on average 11.35% RMS and 8.6% MAE after a week with the performance seeming consistent between days two and seven. These results show promise for using 3D-printed soft piezoresistive foam-like sensors with system identification regarding the viability for applications that require softness, lightweight, and customization such as wearable (force) sensors.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":"6 ","pages":"e3"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810523/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wearable technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/wtc.2024.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sensorized insoles provide a tool for gait studies and health monitoring during daily life. For users to accept such insoles, they need to be comfortable and lightweight. Previous research has demonstrated that sensorized insoles can estimate ground reaction forces (GRFs). However, these insoles often assemble commercial components restricting design freedom and customization. Within this work, we incorporated four 3D-printed soft foam-like sensors to sensorize an insole. To test the insoles, we had nine participants walk on an instrumented treadmill. The four sensors behaved in line with the expected change in pressure distribution during the gait cycle. A subset of this data was used to identify personalized Hammerstein-Wiener (HW) models to estimate the 3D GRFs while the others were used for validation. In addition, the identified HW models showed the best estimation performance (on average root mean squared (RMS) error 9.3%, =0.85 and mean absolute error (MAE) 7%) of the vertical, mediolateral, and anteroposterior GRFs, thereby showing that these sensors can estimate the resulting 3D force reasonably well. These results were comparable to or outperformed other works that used commercial force-sensing resistors with machine learning. Four participants participated in three trials over a week, which showed a decrease in estimation performance over time but stayed on average 11.35% RMS and 8.6% MAE after a week with the performance seeming consistent between days two and seven. These results show promise for using 3D-printed soft piezoresistive foam-like sensors with system identification regarding the viability for applications that require softness, lightweight, and customization such as wearable (force) sensors.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
0
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信