A piezoelectric hydrogel containing bismuth sulfide with cationic vacancies with enhanced sonodynamic/nanozyme activity for synergistically killing bacteria and boosting osteoblast differentiation†

IF 6.1 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Xiaowen Xi, Susu Ma, Ping Sun, Zhitao Hu, Jie Wei and Yunfei Niu
{"title":"A piezoelectric hydrogel containing bismuth sulfide with cationic vacancies with enhanced sonodynamic/nanozyme activity for synergistically killing bacteria and boosting osteoblast differentiation†","authors":"Xiaowen Xi, Susu Ma, Ping Sun, Zhitao Hu, Jie Wei and Yunfei Niu","doi":"10.1039/D4TB02693D","DOIUrl":null,"url":null,"abstract":"<p >A piezoelectric nanozyme is a novel biomaterial with the integration of piezoelectricity and nanozyme activity that has the capability of killing bacteria and promoting cell responses under a mechanical stimulus and exhibits great prospects in tissue regeneration. Herein, a piezoelectric nanozyme of bismuth sulfide (BS) with cationic vacancies (VBS) was synthesized, which exhibits enhanced piezoelectricity and nanozyme activities compared with BS. Moreover, a piezoelectric hydrogel of VBS and phenylboronic acid grafted sodium alginate-arginine (VBS-PSA) was prepared. Triggered by ultrasound (US) with high power (&gt;0.5 W cm<small><sup>−2</sup></small>), VBS-PSA produces a large amount of reactive oxygen species (ROS) through both piezoelectricity-enhanced sonodynamic efficiency and peroxidase-like (POD-like) activity, thereby displaying the powerful antibacterial capability. However, under low-power US (≤0.5 W cm<small><sup>−2</sup></small>), the piezoelectric effect of VBS-PSA generates electrical signals that significantly stimulate the osteoblast responses (proliferation and osteoblast differentiation) and enhance catalase-like (CAT-like) activity for scavengers of ROS and generation of oxygen, thereby creating a favorable microenvironment for cell growth. Our study presents a novel strategy to apply the piezoelectric effect of hydrogels for enhancing sonodynamic efficiency and nanozyme activities that synergistically kill bacteria and stimulate osteoblast responses. The piezoelectric hydrogel would have great potential for the repair of infected bone defects.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 10","pages":" 3420-3436"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02693d","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

A piezoelectric nanozyme is a novel biomaterial with the integration of piezoelectricity and nanozyme activity that has the capability of killing bacteria and promoting cell responses under a mechanical stimulus and exhibits great prospects in tissue regeneration. Herein, a piezoelectric nanozyme of bismuth sulfide (BS) with cationic vacancies (VBS) was synthesized, which exhibits enhanced piezoelectricity and nanozyme activities compared with BS. Moreover, a piezoelectric hydrogel of VBS and phenylboronic acid grafted sodium alginate-arginine (VBS-PSA) was prepared. Triggered by ultrasound (US) with high power (>0.5 W cm−2), VBS-PSA produces a large amount of reactive oxygen species (ROS) through both piezoelectricity-enhanced sonodynamic efficiency and peroxidase-like (POD-like) activity, thereby displaying the powerful antibacterial capability. However, under low-power US (≤0.5 W cm−2), the piezoelectric effect of VBS-PSA generates electrical signals that significantly stimulate the osteoblast responses (proliferation and osteoblast differentiation) and enhance catalase-like (CAT-like) activity for scavengers of ROS and generation of oxygen, thereby creating a favorable microenvironment for cell growth. Our study presents a novel strategy to apply the piezoelectric effect of hydrogels for enhancing sonodynamic efficiency and nanozyme activities that synergistically kill bacteria and stimulate osteoblast responses. The piezoelectric hydrogel would have great potential for the repair of infected bone defects.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry B
Journal of Materials Chemistry B MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.30%
发文量
866
期刊介绍: Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive: Antifouling coatings Biocompatible materials Bioelectronics Bioimaging Biomimetics Biomineralisation Bionics Biosensors Diagnostics Drug delivery Gene delivery Immunobiology Nanomedicine Regenerative medicine & Tissue engineering Scaffolds Soft robotics Stem cells Therapeutic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信