Md Najmul Hosain, Yi-Sub Kwak, Jaeeun Lee, Hongseok Choi, Jungwon Park, Jongnam Kim
{"title":"IoT-enabled biosensors for real-time monitoring and early detection of chronic diseases.","authors":"Md Najmul Hosain, Yi-Sub Kwak, Jaeeun Lee, Hongseok Choi, Jungwon Park, Jongnam Kim","doi":"10.20463/pan.2024.0033","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The main objective of this study is to examine and highlight the substantial impact of integrating Internet of Things (IoT) technology and biosensors in the healthcare sector, focusing on their potential to drive substantial advancements and improvements in healthcare. Emphasis is placed on tackling the global challenge posed by chronic diseases by proposing an all-encompassing healthcare system that facilitates real-time monitoring, early detection, and remote management of these conditions. Chronic diseases, distinguished by their prolonged duration and gradual progression, have emerged as a marked challenge for healthcare systems worldwide. This paper seeks to illustrate how biosensors, with the capability to identify specific biomarkers, can play a pivotal role in delivering personalized patient care, enhancing outcomes, and mitigating healthcare expenses.</p><p><strong>Methods: </strong>This review was conducted using a systematic and comprehensive approach to analyze the integration of Internet of Things (IoT) technology with biosensors for real-time monitoring and early detection of chronic diseases. Relevant literature was sourced from reputable databases, including IEEE Xplore, PubMed, and Elsevier's ScienceDirect, focusing on studies published between 2014 and 2024. Keywords such as \"IoT in healthcare,\" \"biosensors for chronic diseases,\" and \"real-time monitoring systems\" guided the selection process. This review included original research articles, review papers, and case studies, which were critically analyzed to assess current advancements, challenges, and future directions in this interdisciplinary field. The findings were synthesized to provide an in-depth understanding of how IoT-enabled biosensors are transforming healthcare, particularly in chronic disease management.</p><p><strong>Results: </strong>This research explores the integration of IoT and biosensors for real-time monitoring of chronic diseases. The combination offers personalized healthcare, early detection, and cost reduction. Applications include remote patient monitoring, cardiac health, glucose management, and elderly care. Despite challenges, ongoing advancements promise to optimize accuracy, efficiency, and ethical soundness, ushering in a patient-centric healthcare era.</p><p><strong>Conclusion: </strong>The integration of IoT-enabled biosensors approach to addressing global challenges posed by chronic diseases. This study highlights the potential of this convergence in healthcare by facilitating real-time monitoring, early detection, and personalized care. By surpassing limitations of traditional monitoring systems, IoT-enabled biosensors provide continuous insights into patients' health, enabling proactive interventions. Their applications are demonstrated in diverse domains, including remote monitoring, cardiac health, glucose management, and elderly care, showcasing their role in advancing precision medicine and improving patient outcomes. Despite technical hurdles, ongoing advancements in miniaturization, edge computing, and AI-driven analytics aim to enhance accuracy, efficiency, and ethical practices, paving the way for a proactive and patient-centric healthcare era.</p>","PeriodicalId":74444,"journal":{"name":"Physical activity and nutrition","volume":"28 4","pages":"60-69"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical activity and nutrition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20463/pan.2024.0033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The main objective of this study is to examine and highlight the substantial impact of integrating Internet of Things (IoT) technology and biosensors in the healthcare sector, focusing on their potential to drive substantial advancements and improvements in healthcare. Emphasis is placed on tackling the global challenge posed by chronic diseases by proposing an all-encompassing healthcare system that facilitates real-time monitoring, early detection, and remote management of these conditions. Chronic diseases, distinguished by their prolonged duration and gradual progression, have emerged as a marked challenge for healthcare systems worldwide. This paper seeks to illustrate how biosensors, with the capability to identify specific biomarkers, can play a pivotal role in delivering personalized patient care, enhancing outcomes, and mitigating healthcare expenses.
Methods: This review was conducted using a systematic and comprehensive approach to analyze the integration of Internet of Things (IoT) technology with biosensors for real-time monitoring and early detection of chronic diseases. Relevant literature was sourced from reputable databases, including IEEE Xplore, PubMed, and Elsevier's ScienceDirect, focusing on studies published between 2014 and 2024. Keywords such as "IoT in healthcare," "biosensors for chronic diseases," and "real-time monitoring systems" guided the selection process. This review included original research articles, review papers, and case studies, which were critically analyzed to assess current advancements, challenges, and future directions in this interdisciplinary field. The findings were synthesized to provide an in-depth understanding of how IoT-enabled biosensors are transforming healthcare, particularly in chronic disease management.
Results: This research explores the integration of IoT and biosensors for real-time monitoring of chronic diseases. The combination offers personalized healthcare, early detection, and cost reduction. Applications include remote patient monitoring, cardiac health, glucose management, and elderly care. Despite challenges, ongoing advancements promise to optimize accuracy, efficiency, and ethical soundness, ushering in a patient-centric healthcare era.
Conclusion: The integration of IoT-enabled biosensors approach to addressing global challenges posed by chronic diseases. This study highlights the potential of this convergence in healthcare by facilitating real-time monitoring, early detection, and personalized care. By surpassing limitations of traditional monitoring systems, IoT-enabled biosensors provide continuous insights into patients' health, enabling proactive interventions. Their applications are demonstrated in diverse domains, including remote monitoring, cardiac health, glucose management, and elderly care, showcasing their role in advancing precision medicine and improving patient outcomes. Despite technical hurdles, ongoing advancements in miniaturization, edge computing, and AI-driven analytics aim to enhance accuracy, efficiency, and ethical practices, paving the way for a proactive and patient-centric healthcare era.