Low-power Spiking Neural Network audio source localisation using a Hilbert Transform audio event encoding scheme.

Saeid Haghighatshoar, Dylan Richard Muir
{"title":"Low-power Spiking Neural Network audio source localisation using a Hilbert Transform audio event encoding scheme.","authors":"Saeid Haghighatshoar, Dylan Richard Muir","doi":"10.1038/s44172-025-00359-9","DOIUrl":null,"url":null,"abstract":"<p><p>Sound source localisation is used in many consumer devices, to isolate audio from individual speakers and reject noise. Localization is frequently accomplished by \"beamforming\", which combines phase-shifted audio streams to increase power from chosen source directions, under a known microphone array geometry. Dense band-pass filters are often needed to obtain narrowband signal components from wideband audio. These approaches achieve high accuracy, but narrowband beamforming is computationally demanding, and not ideal for low-power IoT devices. We introduce a method for sound source localisation on arbitrary microphone arrays, designed for efficient implementation in ultra-low-power spiking neural networks (SNNs). We use a Hilbert transform to avoid dense band-pass filters, and introduce an event-based encoding method that captures the phase of the complex analytic signal. Our approach achieves high accuracy for SNN methods, comparable with traditional non-SNN super-resolution beamforming. We deploy our method to low-power SNN inference hardware, with much lower power consumption than super-resolution methods. We demonstrate that signal processing approaches co-designed with spiking neural network implementations can achieve much improved power efficiency. Our Hilbert-transform-based method for beamforming can also improve the efficiency of traditional digital signal processing.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"18"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814312/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00359-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sound source localisation is used in many consumer devices, to isolate audio from individual speakers and reject noise. Localization is frequently accomplished by "beamforming", which combines phase-shifted audio streams to increase power from chosen source directions, under a known microphone array geometry. Dense band-pass filters are often needed to obtain narrowband signal components from wideband audio. These approaches achieve high accuracy, but narrowband beamforming is computationally demanding, and not ideal for low-power IoT devices. We introduce a method for sound source localisation on arbitrary microphone arrays, designed for efficient implementation in ultra-low-power spiking neural networks (SNNs). We use a Hilbert transform to avoid dense band-pass filters, and introduce an event-based encoding method that captures the phase of the complex analytic signal. Our approach achieves high accuracy for SNN methods, comparable with traditional non-SNN super-resolution beamforming. We deploy our method to low-power SNN inference hardware, with much lower power consumption than super-resolution methods. We demonstrate that signal processing approaches co-designed with spiking neural network implementations can achieve much improved power efficiency. Our Hilbert-transform-based method for beamforming can also improve the efficiency of traditional digital signal processing.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信