Dong Luo, Hui-Qi Zhang, Xin-Yang Xuanyuan, Dan Deng, Zheng-Mao Lu, Wen-Shang Liu, Meng Li
{"title":"MXene-Derived Multifunctional Biomaterials: New Opportunities for Wound Healing.","authors":"Dong Luo, Hui-Qi Zhang, Xin-Yang Xuanyuan, Dan Deng, Zheng-Mao Lu, Wen-Shang Liu, Meng Li","doi":"10.34133/bmr.0143","DOIUrl":null,"url":null,"abstract":"<p><p>The process of wound healing is frequently impeded by metabolic imbalances within the wound microenvironment. MXenes exhibit exceptional biocompatibility, biodegradability, photothermal conversion efficiency, conductivity, and adaptable surface functionalization, demonstrating marked potential in the development of multifunctional platforms for wound healing. Moreover, the integration of MXenes with other bioactive nanomaterials has been shown to enhance their therapeutic efficacy, paving the way for innovative approaches to wound healing. In this review, we provide a systematic exposition of the mechanisms through which MXenes facilitate wound healing and offer a comprehensive analysis of the current research landscape on MXene-based multifunctional bioactive composites in this field. By delving into the latest scientific discoveries, we identify the existing challenges and potential future trajectories for the advancement of MXenes. Our comprehensive evaluation aims to provide insightful guidance for the formulation of more effective wound healing strategies.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0143"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811641/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The process of wound healing is frequently impeded by metabolic imbalances within the wound microenvironment. MXenes exhibit exceptional biocompatibility, biodegradability, photothermal conversion efficiency, conductivity, and adaptable surface functionalization, demonstrating marked potential in the development of multifunctional platforms for wound healing. Moreover, the integration of MXenes with other bioactive nanomaterials has been shown to enhance their therapeutic efficacy, paving the way for innovative approaches to wound healing. In this review, we provide a systematic exposition of the mechanisms through which MXenes facilitate wound healing and offer a comprehensive analysis of the current research landscape on MXene-based multifunctional bioactive composites in this field. By delving into the latest scientific discoveries, we identify the existing challenges and potential future trajectories for the advancement of MXenes. Our comprehensive evaluation aims to provide insightful guidance for the formulation of more effective wound healing strategies.