Combining interictal intracranial EEG and fMRI to compute a dynamic resting-state index for surgical outcome validation.

Frontiers in network physiology Pub Date : 2025-01-28 eCollection Date: 2024-01-01 DOI:10.3389/fnetp.2024.1491967
Varina L Boerwinkle, Kristin M Gunnarsdottir, Bethany L Sussman, Sarah N Wyckoff, Emilio G Cediel, Belfin Robinson, William R Reuther, Aryan Kodali, Sridevi V Sarma
{"title":"Combining interictal intracranial EEG and fMRI to compute a dynamic resting-state index for surgical outcome validation.","authors":"Varina L Boerwinkle, Kristin M Gunnarsdottir, Bethany L Sussman, Sarah N Wyckoff, Emilio G Cediel, Belfin Robinson, William R Reuther, Aryan Kodali, Sridevi V Sarma","doi":"10.3389/fnetp.2024.1491967","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Accurate localization of the seizure onset zone (SOZ) is critical for successful epilepsy surgery but remains challenging with current techniques. We developed a novel seizure onset network characterization tool that combines dynamic biomarkers of resting-state intracranial stereoelectroencephalography (rs-iEEG) and resting-state functional magnetic resonance imaging (rs-fMRI), vetted against surgical outcomes. This approach aims to reduce reliance on capturing seizures during invasive monitoring to pinpoint the SOZ.</p><p><strong>Methods: </strong>We computed the source-sink index (SSI) from rs-iEEG for all implanted regions and from rs-fMRI for regions identified as potential SOZs by noninvasive modalities. The SSI scores were evaluated in 17 pediatric drug-resistant epilepsy (DRE) patients (ages 3-15 years) by comparing outcomes classified as successful (Engel I or II) versus unsuccessful (Engel III or IV) at 1 year post-surgery.</p><p><strong>Results: </strong>Of 30 reviewed patients, 17 met the inclusion criteria. The combined dynamic index (im-DNM) integrating rs-iEEG and rs-fMRI significantly differentiated good (Engel I-II) from poor (Engel III-IV) surgical outcomes, outperforming the predictive accuracy of individual biomarkers from either modality alone.</p><p><strong>Conclusion: </strong>The combined dynamic network model demonstrated superior predictive performance than standalone rs-fMRI or rs-iEEG indices.</p><p><strong>Significance: </strong>By leveraging interictal data from two complementary modalities, this combined approach has the potential to improve epilepsy surgical outcomes, increase surgical candidacy, and reduce the duration of invasive monitoring.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"4 ","pages":"1491967"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811083/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in network physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnetp.2024.1491967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Accurate localization of the seizure onset zone (SOZ) is critical for successful epilepsy surgery but remains challenging with current techniques. We developed a novel seizure onset network characterization tool that combines dynamic biomarkers of resting-state intracranial stereoelectroencephalography (rs-iEEG) and resting-state functional magnetic resonance imaging (rs-fMRI), vetted against surgical outcomes. This approach aims to reduce reliance on capturing seizures during invasive monitoring to pinpoint the SOZ.

Methods: We computed the source-sink index (SSI) from rs-iEEG for all implanted regions and from rs-fMRI for regions identified as potential SOZs by noninvasive modalities. The SSI scores were evaluated in 17 pediatric drug-resistant epilepsy (DRE) patients (ages 3-15 years) by comparing outcomes classified as successful (Engel I or II) versus unsuccessful (Engel III or IV) at 1 year post-surgery.

Results: Of 30 reviewed patients, 17 met the inclusion criteria. The combined dynamic index (im-DNM) integrating rs-iEEG and rs-fMRI significantly differentiated good (Engel I-II) from poor (Engel III-IV) surgical outcomes, outperforming the predictive accuracy of individual biomarkers from either modality alone.

Conclusion: The combined dynamic network model demonstrated superior predictive performance than standalone rs-fMRI or rs-iEEG indices.

Significance: By leveraging interictal data from two complementary modalities, this combined approach has the potential to improve epilepsy surgical outcomes, increase surgical candidacy, and reduce the duration of invasive monitoring.

结合间歇期颅内脑电图和功能磁共振成像计算动态静息状态指数,用于手术结果验证。
准确定位癫痫发作区(SOZ)是成功的癫痫手术的关键,但目前的技术仍然具有挑战性。我们开发了一种新的癫痫发作网络表征工具,该工具结合了静息状态颅内立体脑电图(rs-iEEG)和静息状态功能磁共振成像(rs-fMRI)的动态生物标志物,对手术结果进行了审查。该方法旨在减少在侵入性监测期间对捕获癫痫发作的依赖,以确定SOZ。方法:我们通过rs-iEEG计算了所有植入区域的源库指数(SSI),并通过rs-fMRI计算了通过无创方式确定为潜在soz的区域。通过比较手术后1年成功(Engel I或II)与不成功(Engel III或IV)的结果,对17例儿童耐药癫痫(DRE)患者(3-15岁)的SSI评分进行评估。结果:30例患者中,17例符合纳入标准。结合rs-iEEG和rs-fMRI的联合动态指数(im-DNM)显着区分良好(Engel I-II)和不良(Engel III-IV)手术结果,优于单独使用任何一种方式的单个生物标志物的预测准确性。结论:联合动态网络模型比单独rs-fMRI或rs-iEEG指标具有更好的预测效果。意义:通过利用两种互补模式的间期数据,这种联合方法有可能改善癫痫手术结果,增加手术候选性,并缩短有创监测的持续时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信