Chiranjib Chakraborty, Manojit Bhattacharya, Arpita Das, Ali S Abdelhameed
{"title":"Phylogenetic analyses of the spread of Clade I MPOX in African and non-African nations.","authors":"Chiranjib Chakraborty, Manojit Bhattacharya, Arpita Das, Ali S Abdelhameed","doi":"10.1007/s11262-025-02138-2","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, mpox has spread in some parts of Africa, such as Congo (DRC), Burundi, Rwanda, Uganda, and Kenya, worsening the situation in DRC and Burundi compared to the other parts of Africa due to the spread of the Clade Ib, with several confirmed and lethal cases. The study aims to analyze the broader molecular phylogenetics using greater complete genome sequences and molecular phylogenetics of Clade I (Clade Ia and Clade Ib), nucleotide diversity of the genome of Clade I, NGA/TCN context of G- > A/C- > T mutations, and epidemiology of the recent spread of mpox in the African countries. Overall molecular phylogenetics of mpox inform the divergence was noted between 0.00220 and 0.00265 and found Clade IIb has further subdivided into 37 sublineages. From our phylogenetic analysis and the tracking of recent mpox variants, we report the spread of Clade I (Clade Ib) of mpox, a virulent mpox, in the African continent, Thailand, Sweden, and USA. Furthermore, two Clades, Clade Ia and Clade Ib, have originated from Clade I. Recently, Clade Ib has expanded its region within African continent. We reported the mutation pattern in the genome. Epidemiological analysis indicates the most affected country is the Democratic Republic of the Congo (DRC). This work shows that mpox is steadily adapting as geographic area increases and can help the health authorities develop policies such as vaccinations, and travel restrictions to contain the spread of mpox.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Genes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11262-025-02138-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, mpox has spread in some parts of Africa, such as Congo (DRC), Burundi, Rwanda, Uganda, and Kenya, worsening the situation in DRC and Burundi compared to the other parts of Africa due to the spread of the Clade Ib, with several confirmed and lethal cases. The study aims to analyze the broader molecular phylogenetics using greater complete genome sequences and molecular phylogenetics of Clade I (Clade Ia and Clade Ib), nucleotide diversity of the genome of Clade I, NGA/TCN context of G- > A/C- > T mutations, and epidemiology of the recent spread of mpox in the African countries. Overall molecular phylogenetics of mpox inform the divergence was noted between 0.00220 and 0.00265 and found Clade IIb has further subdivided into 37 sublineages. From our phylogenetic analysis and the tracking of recent mpox variants, we report the spread of Clade I (Clade Ib) of mpox, a virulent mpox, in the African continent, Thailand, Sweden, and USA. Furthermore, two Clades, Clade Ia and Clade Ib, have originated from Clade I. Recently, Clade Ib has expanded its region within African continent. We reported the mutation pattern in the genome. Epidemiological analysis indicates the most affected country is the Democratic Republic of the Congo (DRC). This work shows that mpox is steadily adapting as geographic area increases and can help the health authorities develop policies such as vaccinations, and travel restrictions to contain the spread of mpox.
期刊介绍:
Viruses are convenient models for the elucidation of life processes. The study of viruses is again on the cutting edge of biological sciences: systems biology, genomics, proteomics, metagenomics, using the newest most powerful tools.
Huge amounts of new details on virus interactions with the cell, other pathogens and the hosts – animal (including human), insect, fungal, plant, bacterial, and archaeal - and their role in infection and disease are forthcoming in perplexing details requiring analysis and comments.
Virus Genes is dedicated to the publication of studies on the structure and function of viruses and their genes, the molecular and systems interactions with the host and all applications derived thereof, providing a forum for the analysis of data and discussion of its implications, and the development of new hypotheses.