Songyuan Tang, Tekin Bicer, Tao Sun, Kamel Fezzaa, Samuel J Clark
{"title":"Deep learning-based spatio-temporal fusion for high-fidelity ultra-high-speed X-ray radiography.","authors":"Songyuan Tang, Tekin Bicer, Tao Sun, Kamel Fezzaa, Samuel J Clark","doi":"10.1107/S1600577525000323","DOIUrl":null,"url":null,"abstract":"<p><p>Full-field ultra-high-speed (UHS) X-ray imaging experiments have been well established to characterize various processes and phenomena. However, the potential of UHS experiments through the joint acquisition of X-ray videos with distinct configurations has not been fully exploited. In this paper, we investigate the use of a deep learning-based spatio-temporal fusion (STF) framework to fuse two complementary sequences of X-ray images and reconstruct the target image sequence with high spatial resolution, high frame rate and high fidelity. We applied a transfer learning strategy to train the model and compared the peak signal-to-noise ratio (PSNR), average absolute difference (AAD) and structural similarity (SSIM) of the proposed framework on two independent X-ray data sets with those obtained from a baseline deep learning model, a Bayesian fusion framework and the bicubic interpolation method. The proposed framework outperformed the other methods with various configurations of the input frame separations and image noise levels. With three subsequent images from the low-resolution (LR) sequence of a four times lower spatial resolution and another two images from the high-resolution (HR) sequence of a 20 times lower frame rate, the proposed approach achieved average PSNRs of 37.57 dB and 35.15 dB, respectively. When coupled with the appropriate combination of high-speed cameras, the proposed approach will enhance the performance and therefore the scientific value of UHS X-ray imaging experiments.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"432-441"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892903/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577525000323","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Full-field ultra-high-speed (UHS) X-ray imaging experiments have been well established to characterize various processes and phenomena. However, the potential of UHS experiments through the joint acquisition of X-ray videos with distinct configurations has not been fully exploited. In this paper, we investigate the use of a deep learning-based spatio-temporal fusion (STF) framework to fuse two complementary sequences of X-ray images and reconstruct the target image sequence with high spatial resolution, high frame rate and high fidelity. We applied a transfer learning strategy to train the model and compared the peak signal-to-noise ratio (PSNR), average absolute difference (AAD) and structural similarity (SSIM) of the proposed framework on two independent X-ray data sets with those obtained from a baseline deep learning model, a Bayesian fusion framework and the bicubic interpolation method. The proposed framework outperformed the other methods with various configurations of the input frame separations and image noise levels. With three subsequent images from the low-resolution (LR) sequence of a four times lower spatial resolution and another two images from the high-resolution (HR) sequence of a 20 times lower frame rate, the proposed approach achieved average PSNRs of 37.57 dB and 35.15 dB, respectively. When coupled with the appropriate combination of high-speed cameras, the proposed approach will enhance the performance and therefore the scientific value of UHS X-ray imaging experiments.
期刊介绍:
Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.