Stephen D Robinson, Chrysa Filippopoulou, Simoni Besta, Mark Samuels, Andrea L Betrán, Maha Abu Ajamieh, Viviana Vella, William Jones, Georgios Giamas
{"title":"Spatial biology - unravelling complexity within the glioblastoma microenvironment.","authors":"Stephen D Robinson, Chrysa Filippopoulou, Simoni Besta, Mark Samuels, Andrea L Betrán, Maha Abu Ajamieh, Viviana Vella, William Jones, Georgios Giamas","doi":"10.1016/j.molmed.2025.01.014","DOIUrl":null,"url":null,"abstract":"<p><p>The advent and refinement of state-of-the-art spatial biology technologies have facilitated analysis that combines the advantages of high-throughput single cell analysis with techniques that preserve tissue architecture. This combination of cellular phenotyping with retained spatial context provides a much greater understanding of cellular interactions within the tumour microenvironment (TME). For glioblastoma, with its significant intra-tumoural heterogeneity, cellular plasticity, and complex TME, appreciating and understanding these spatial patterns may prove key to improving patient outcomes. This review examines the advances in spatial biology techniques, discusses how these methodologies are being applied to study glioblastoma, and explores how spatial information improves understanding of the TME. Ultimately, it is this spatial context that will accelerate the identification of more effective treatments for glioblastoma.</p>","PeriodicalId":23263,"journal":{"name":"Trends in molecular medicine","volume":" ","pages":""},"PeriodicalIF":12.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molmed.2025.01.014","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The advent and refinement of state-of-the-art spatial biology technologies have facilitated analysis that combines the advantages of high-throughput single cell analysis with techniques that preserve tissue architecture. This combination of cellular phenotyping with retained spatial context provides a much greater understanding of cellular interactions within the tumour microenvironment (TME). For glioblastoma, with its significant intra-tumoural heterogeneity, cellular plasticity, and complex TME, appreciating and understanding these spatial patterns may prove key to improving patient outcomes. This review examines the advances in spatial biology techniques, discusses how these methodologies are being applied to study glioblastoma, and explores how spatial information improves understanding of the TME. Ultimately, it is this spatial context that will accelerate the identification of more effective treatments for glioblastoma.
期刊介绍:
Trends in Molecular Medicine (TMM) aims to offer concise and contextualized perspectives on the latest research advancing biomedical science toward better diagnosis, treatment, and prevention of human diseases. It focuses on research at the intersection of basic biology and clinical research, covering new concepts in human biology and pathology with clear implications for diagnostics and therapy. TMM reviews bridge the gap between bench and bedside, discussing research from preclinical studies to patient-enrolled trials. The major themes include disease mechanisms, tools and technologies, diagnostics, and therapeutics, with a preference for articles relevant to multiple themes. TMM serves as a platform for discussion, pushing traditional boundaries and fostering collaboration between scientists and clinicians. The journal seeks to publish provocative and authoritative articles that are also accessible to a broad audience, inspiring new directions in molecular medicine to enhance human health.