B Noli, G Borghero, M M Mascia, Mustafa Hkir, M Puligheddu, C Cocco
{"title":"NERP-1 modifications in amyotrophic lateral sclerosis.","authors":"B Noli, G Borghero, M M Mascia, Mustafa Hkir, M Puligheddu, C Cocco","doi":"10.1016/j.tice.2025.102780","DOIUrl":null,"url":null,"abstract":"<p><p>VGF peptides, such as NERPs (neuroendocrine regulatory peptides 1 and 2), are derived from amino acids 282-306 and 313-350, respectively, of the human proVGF, which is produced in spinal cord motor neurons. Although certain VGF-derived peptides are changed in ALS, less is known about NERPs. Possible modulations of NERPs and additional VGF peptides (NAPP and TPGH) were investigated using specific antibodies through competitive ELISA in the plasma of ALS patients (at both the initial and advanced phases; n = 46 each vs. 46 controls). As additional controls, naïve PD patients were also enrolled (n = 19 vs. 18 controls) while the potential VGF peptide role in oxidative stress was investigated using a motoneuron-like cell line (NSC34) stressed with sodium arsenate (SA). Western blot (WB) and sephadex chromatography (SC) were used to identify the molecular weight (MW) forms recognized by the VGF antibodies. Exclusively NERP-1 immunoreactivity was changed (elevated) in all plasma samples of ALS patients (compared to controls). Therefore, the NERP-1 antibody was the sole antibody used in ELISA with PD samples and NSC-34 cells. No alterations were seen in PD samples (vs. controls) while NERP-1 immunoreactivity decreased within SA-treated cells but increased in their culture medium. The viability test performed by adding NERP-1 to the stressed cells showed no protective effect. Using WB and SC, we revealed NERP-1 antibody reactivity against various MW forms, including those compatible with the NERP-1 peptide and/or proVGF. NERP-1 is suggested as a possible ALS blood biomarker.</p>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"93 ","pages":"102780"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tice.2025.102780","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
VGF peptides, such as NERPs (neuroendocrine regulatory peptides 1 and 2), are derived from amino acids 282-306 and 313-350, respectively, of the human proVGF, which is produced in spinal cord motor neurons. Although certain VGF-derived peptides are changed in ALS, less is known about NERPs. Possible modulations of NERPs and additional VGF peptides (NAPP and TPGH) were investigated using specific antibodies through competitive ELISA in the plasma of ALS patients (at both the initial and advanced phases; n = 46 each vs. 46 controls). As additional controls, naïve PD patients were also enrolled (n = 19 vs. 18 controls) while the potential VGF peptide role in oxidative stress was investigated using a motoneuron-like cell line (NSC34) stressed with sodium arsenate (SA). Western blot (WB) and sephadex chromatography (SC) were used to identify the molecular weight (MW) forms recognized by the VGF antibodies. Exclusively NERP-1 immunoreactivity was changed (elevated) in all plasma samples of ALS patients (compared to controls). Therefore, the NERP-1 antibody was the sole antibody used in ELISA with PD samples and NSC-34 cells. No alterations were seen in PD samples (vs. controls) while NERP-1 immunoreactivity decreased within SA-treated cells but increased in their culture medium. The viability test performed by adding NERP-1 to the stressed cells showed no protective effect. Using WB and SC, we revealed NERP-1 antibody reactivity against various MW forms, including those compatible with the NERP-1 peptide and/or proVGF. NERP-1 is suggested as a possible ALS blood biomarker.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.