Dysfunction in the hierarchy of morphometric similarity network in Alzheimer's disease and its correlation with cognitive performance and gene expression profiles.

IF 5.9 2区 医学 Q1 PSYCHIATRY
Chuchu Zheng, Wei Zhao, Zeyu Yang, Shuixia Guo
{"title":"Dysfunction in the hierarchy of morphometric similarity network in Alzheimer's disease and its correlation with cognitive performance and gene expression profiles.","authors":"Chuchu Zheng, Wei Zhao, Zeyu Yang, Shuixia Guo","doi":"10.1017/S0033291725000091","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Previous research has shown abnormal functional network gradients in Alzheimer's disease (AD). Structural network gradient is capable of capturing continuous changes in brain morphology and has the ability to elucidate the underlying processes of neurodevelopment. However, it remains unclear whether structural network gradients are altered in AD and what associations exist between these changes and cognitive function, and gene expression profiles.</p><p><strong>Methods: </strong>By constructing an individualized structural network gradient decomposition framework, we calculated the morphological similarity network (MSN) gradients for 404 subjects (186 AD patients and 218 normal controls). We investigated AD-related alterations in MSN gradients, along with the associations between MSN gradients and cognitive function, MSN topological properties, and gene expression profiles.</p><p><strong>Results: </strong>Our findings indicated that the principal MSN gradient alterations in AD were primarily characterized by an increase in the primary and secondary sensory cortices and a decrease in the association cortex 1. The primary and higher-order cortices exhibited opposite associations with cognition, including executive function, language skills, and memory processes. Moreover, the principal MSN gradients were found to significantly predict cognitive function in AD. The altered gradient pattern was 14.8% attributable to gene expression profiles, and the genes demonstrating the highest correlation are involved in metabolic activity and synaptic signaling.</p><p><strong>Conclusions: </strong>Our results offered novel insights into the underlying mechanisms of structural brain network impairment in AD patients, enhancing our understanding of the neurobiological processes responsible for impaired cognition in patients with AD, and offering a new dimensional structural biomarker for AD.</p>","PeriodicalId":20891,"journal":{"name":"Psychological Medicine","volume":"55 ","pages":"e42"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0033291725000091","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Previous research has shown abnormal functional network gradients in Alzheimer's disease (AD). Structural network gradient is capable of capturing continuous changes in brain morphology and has the ability to elucidate the underlying processes of neurodevelopment. However, it remains unclear whether structural network gradients are altered in AD and what associations exist between these changes and cognitive function, and gene expression profiles.

Methods: By constructing an individualized structural network gradient decomposition framework, we calculated the morphological similarity network (MSN) gradients for 404 subjects (186 AD patients and 218 normal controls). We investigated AD-related alterations in MSN gradients, along with the associations between MSN gradients and cognitive function, MSN topological properties, and gene expression profiles.

Results: Our findings indicated that the principal MSN gradient alterations in AD were primarily characterized by an increase in the primary and secondary sensory cortices and a decrease in the association cortex 1. The primary and higher-order cortices exhibited opposite associations with cognition, including executive function, language skills, and memory processes. Moreover, the principal MSN gradients were found to significantly predict cognitive function in AD. The altered gradient pattern was 14.8% attributable to gene expression profiles, and the genes demonstrating the highest correlation are involved in metabolic activity and synaptic signaling.

Conclusions: Our results offered novel insights into the underlying mechanisms of structural brain network impairment in AD patients, enhancing our understanding of the neurobiological processes responsible for impaired cognition in patients with AD, and offering a new dimensional structural biomarker for AD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Psychological Medicine
Psychological Medicine 医学-精神病学
CiteScore
11.30
自引率
4.30%
发文量
711
审稿时长
3-6 weeks
期刊介绍: Now in its fifth decade of publication, Psychological Medicine is a leading international journal in the fields of psychiatry, related aspects of psychology and basic sciences. From 2014, there are 16 issues a year, each featuring original articles reporting key research being undertaken worldwide, together with shorter editorials by distinguished scholars and an important book review section. The journal''s success is clearly demonstrated by a consistently high impact factor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信