Slow cortical dynamics generate context processing and novelty detection.

IF 14.7 1区 医学 Q1 NEUROSCIENCES
Neuron Pub Date : 2025-03-19 Epub Date: 2025-02-10 DOI:10.1016/j.neuron.2025.01.011
Yuriy Shymkiv, Jordan P Hamm, Sean Escola, Rafael Yuste
{"title":"Slow cortical dynamics generate context processing and novelty detection.","authors":"Yuriy Shymkiv, Jordan P Hamm, Sean Escola, Rafael Yuste","doi":"10.1016/j.neuron.2025.01.011","DOIUrl":null,"url":null,"abstract":"<p><p>The cortex amplifies responses to novel stimuli while suppressing redundant ones. Novelty detection is necessary to efficiently process sensory information and build predictive models of the environment, and it is also altered in schizophrenia. To investigate the circuit mechanisms underlying novelty detection, we used an auditory \"oddball\" paradigm and two-photon calcium imaging to measure responses to simple and complex stimuli across mouse auditory cortex. Stimulus statistics and complexity generated specific responses across auditory areas. Neuronal ensembles reliably encoded auditory features and temporal context. Interestingly, stimulus-evoked population responses were particularly long lasting, reflecting stimulus history and affecting future responses. These slow cortical dynamics encoded stimulus temporal context and generated stronger responses to novel stimuli. Recurrent neural network models trained on the oddball task also exhibited slow network dynamics and recapitulated the biological data. We conclude that the slow dynamics of recurrent cortical networks underlie processing and novelty detection.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"847-857.e8"},"PeriodicalIF":14.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925667/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.01.011","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The cortex amplifies responses to novel stimuli while suppressing redundant ones. Novelty detection is necessary to efficiently process sensory information and build predictive models of the environment, and it is also altered in schizophrenia. To investigate the circuit mechanisms underlying novelty detection, we used an auditory "oddball" paradigm and two-photon calcium imaging to measure responses to simple and complex stimuli across mouse auditory cortex. Stimulus statistics and complexity generated specific responses across auditory areas. Neuronal ensembles reliably encoded auditory features and temporal context. Interestingly, stimulus-evoked population responses were particularly long lasting, reflecting stimulus history and affecting future responses. These slow cortical dynamics encoded stimulus temporal context and generated stronger responses to novel stimuli. Recurrent neural network models trained on the oddball task also exhibited slow network dynamics and recapitulated the biological data. We conclude that the slow dynamics of recurrent cortical networks underlie processing and novelty detection.

缓慢的皮质动态产生上下文处理和新颖性检测。
大脑皮层会放大对新刺激的反应,同时抑制多余的刺激。新颖性检测是有效处理感官信息和建立环境预测模型所必需的,并且在精神分裂症中也发生了改变。为了研究新颖性检测的电路机制,我们使用听觉“古怪”范式和双光子钙成像来测量小鼠听觉皮层对简单和复杂刺激的反应。刺激统计和复杂性在听觉区域产生了特定的反应。神经元集合可靠地编码听觉特征和时间背景。有趣的是,刺激诱发的人群反应特别持久,反映了刺激历史并影响了未来的反应。这些缓慢的皮层动态编码刺激的时间背景,并对新刺激产生更强的反应。在古怪任务上训练的递归神经网络模型也表现出缓慢的网络动态和重述生物数据。我们得出结论,周期性皮层网络的缓慢动态是处理和新颖性检测的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信