Polymeric nanoparticles with a thermoresponsive shell loaded with fluorescent molecules allow for thermally enhanced fluorescence imaging and singlet oxygen generation.

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Oksana Chepurna, Artem Yakovliev, Roman Ziniuk, Anna Grebinyk, Hao Xu, Olena A Nikolaeva, Andrii I Marynin, Liudmyla O Vretik, Junle Qu, Tymish Y Ohulchanskyy
{"title":"Polymeric nanoparticles with a thermoresponsive shell loaded with fluorescent molecules allow for thermally enhanced fluorescence imaging and singlet oxygen generation.","authors":"Oksana Chepurna, Artem Yakovliev, Roman Ziniuk, Anna Grebinyk, Hao Xu, Olena A Nikolaeva, Andrii I Marynin, Liudmyla O Vretik, Junle Qu, Tymish Y Ohulchanskyy","doi":"10.1039/d4na00687a","DOIUrl":null,"url":null,"abstract":"<p><p>A thermosensitive polymeric nanoformulation (NF) was fabricated for thermally enhanced near-infrared (NIR) fluorescence imaging (FLI). It comprised core-shell nanoparticles (NPs) with a polystyrene core and a thermosensitive shell of a co-polymer of <i>N</i>-isopropylacrylamide and acrylamide [poly(NIPAM-<i>co</i>-AA)], which underwent a reversible conformational transition at 38-40 °C (corresponding to a lower critical solution temperature, LCST), leading to a reversible shrinkage of NPs from ∼250 nm to ∼140 nm for temperatures above LCST. The NIR dye 3782SL or photosensitizer HPPH were loaded to the NP shells. While the fluorescence of 3782SL and HPPH was quenched in water, it recovered in the NPs dispersion as a result of adsorption by NPs. Fluorescence for 3782SL and HPPH in NF increased when the temperature increased above LCST. Heating of HPPH-loaded NFs led to the elongation of the HPPH fluorescence lifetime and increased the generation of singlet oxygen (<sup>1</sup>O<sub>2</sub>). This occurred as a result of the NP shrinkage, corresponding shell compaction and NP aggregation, which hindered the internal conversion for photoexcited molecules adsorbed by NPs, and resulted in an increase in other deactivation pathways, namely fluorescence emission and intersystem crossing. The latter led to an increase in the triplet yield and, consequently, in singlet oxygen generation. Fluorescence microscopy revealed a 2-3-fold increase in the 3782SL or HPPH fluorescence signal from the NF-treated cells after they were heated up to 40 °C. Comparable results were obtained for the FLI of mice <i>in vivo</i>, after subcutaneous, intravenous, or intratumoral NF injections and localized heating by NIR (1.3 μm) laser irradiation. The developed NF holds immense potential for thermally enhanced FLI and photodynamic therapy.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809228/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4na00687a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A thermosensitive polymeric nanoformulation (NF) was fabricated for thermally enhanced near-infrared (NIR) fluorescence imaging (FLI). It comprised core-shell nanoparticles (NPs) with a polystyrene core and a thermosensitive shell of a co-polymer of N-isopropylacrylamide and acrylamide [poly(NIPAM-co-AA)], which underwent a reversible conformational transition at 38-40 °C (corresponding to a lower critical solution temperature, LCST), leading to a reversible shrinkage of NPs from ∼250 nm to ∼140 nm for temperatures above LCST. The NIR dye 3782SL or photosensitizer HPPH were loaded to the NP shells. While the fluorescence of 3782SL and HPPH was quenched in water, it recovered in the NPs dispersion as a result of adsorption by NPs. Fluorescence for 3782SL and HPPH in NF increased when the temperature increased above LCST. Heating of HPPH-loaded NFs led to the elongation of the HPPH fluorescence lifetime and increased the generation of singlet oxygen (1O2). This occurred as a result of the NP shrinkage, corresponding shell compaction and NP aggregation, which hindered the internal conversion for photoexcited molecules adsorbed by NPs, and resulted in an increase in other deactivation pathways, namely fluorescence emission and intersystem crossing. The latter led to an increase in the triplet yield and, consequently, in singlet oxygen generation. Fluorescence microscopy revealed a 2-3-fold increase in the 3782SL or HPPH fluorescence signal from the NF-treated cells after they were heated up to 40 °C. Comparable results were obtained for the FLI of mice in vivo, after subcutaneous, intravenous, or intratumoral NF injections and localized heating by NIR (1.3 μm) laser irradiation. The developed NF holds immense potential for thermally enhanced FLI and photodynamic therapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信