Prabha Chandrasekaran, Máté Krausz, Yu Han, Noriko Mitsuiki, Annemarie Gabrysch, Christina Nöltner, Michele Proietti, Theo Heller, Caroline Grou, Virginie Calderon, Poorani Subramanian, Drew R Jones, Yik Siu, Clayton Deming, Sean Conlan, Steven M Holland, Julia A Segre, Gulbu Uzel, Bodo Grimbacher, Emilia Liana Falcone
{"title":"The intestinal microbiome and metabolome discern disease severity in cytotoxic T-lymphocyte-associated protein 4 deficiency.","authors":"Prabha Chandrasekaran, Máté Krausz, Yu Han, Noriko Mitsuiki, Annemarie Gabrysch, Christina Nöltner, Michele Proietti, Theo Heller, Caroline Grou, Virginie Calderon, Poorani Subramanian, Drew R Jones, Yik Siu, Clayton Deming, Sean Conlan, Steven M Holland, Julia A Segre, Gulbu Uzel, Bodo Grimbacher, Emilia Liana Falcone","doi":"10.1186/s40168-025-02028-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cytotoxic T-lymphocyte-associated protein 4 deficiency (CTLA4-D) is an inborn error of immunity (IEI) caused by heterozygous mutations, and characterized by immune cell infiltration into the gut and other organs, leading to intestinal disease, immune dysregulation and autoimmunity. While regulatory T-cell dysfunction remains central to CTLA4-D immunopathogenesis, mechanisms driving disease severity and intestinal pathology are unknown but likely involve intestinal dysbiosis. We determined whether the intestinal microbiome and metabolome could distinguish individuals with severe CTLA4-D and identify biomarkers of disease severity.</p><p><strong>Results: </strong>The genera Veillonella and Streptococcus emerged as biomarkers that distinguished CTLA4-D from healthy cohorts from both the National Institutes of Health (NIH) Clinical Center, USA (NIH; CTLA-D, n = 32; healthy controls, n = 16), and a geographically distinct cohort from the Center for Chronic Immunodeficiency (CCI) of the Medical Center - University of Freiburg, Germany (CCI; CTLA4-D, n = 25; healthy controls, n = 24). Since IEIs in general may be associated with perturbations of the microbiota, a disease control cohort of individuals with common variable immunodeficiency (CVID, n = 20) was included to evaluate for a CTLA4-D-specific microbial signature. Despite common IEI-associated microbiome changes, the two bacterial genera retained their specificity as biomarkers for CTLA4-D. We further identified intestinal microbiome and metabolomic signatures that distinguished patients with CTLA4-D having severe vs. mild disease. Microbiome changes were associated with distinct stool metabolomic profiles and predicted changes in metabolic pathways. These differences were impacted by the presence of gastrointestinal manifestations and were partially reversed by treatment with abatacept and/or sirolimus.</p><p><strong>Conclusions: </strong>Loss of intestinal microbial diversity and dysbiosis causing metabolomic changes was observed in CTLA4-D. Albeit some of these features were shared with CVID, the distinct changes associated with CTLA4-D highlight the fact that IEI-associated microbiome changes likely reflect the underlying immune dysregulation. Identified candidate intestinal microbial and metabolic biomarkers distinguishing individuals with CTLA4-D based on severity should be studied prospectively to determine their predictive value, and investigated as potential therapeutic ta. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"51"},"PeriodicalIF":13.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817180/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-025-02028-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cytotoxic T-lymphocyte-associated protein 4 deficiency (CTLA4-D) is an inborn error of immunity (IEI) caused by heterozygous mutations, and characterized by immune cell infiltration into the gut and other organs, leading to intestinal disease, immune dysregulation and autoimmunity. While regulatory T-cell dysfunction remains central to CTLA4-D immunopathogenesis, mechanisms driving disease severity and intestinal pathology are unknown but likely involve intestinal dysbiosis. We determined whether the intestinal microbiome and metabolome could distinguish individuals with severe CTLA4-D and identify biomarkers of disease severity.
Results: The genera Veillonella and Streptococcus emerged as biomarkers that distinguished CTLA4-D from healthy cohorts from both the National Institutes of Health (NIH) Clinical Center, USA (NIH; CTLA-D, n = 32; healthy controls, n = 16), and a geographically distinct cohort from the Center for Chronic Immunodeficiency (CCI) of the Medical Center - University of Freiburg, Germany (CCI; CTLA4-D, n = 25; healthy controls, n = 24). Since IEIs in general may be associated with perturbations of the microbiota, a disease control cohort of individuals with common variable immunodeficiency (CVID, n = 20) was included to evaluate for a CTLA4-D-specific microbial signature. Despite common IEI-associated microbiome changes, the two bacterial genera retained their specificity as biomarkers for CTLA4-D. We further identified intestinal microbiome and metabolomic signatures that distinguished patients with CTLA4-D having severe vs. mild disease. Microbiome changes were associated with distinct stool metabolomic profiles and predicted changes in metabolic pathways. These differences were impacted by the presence of gastrointestinal manifestations and were partially reversed by treatment with abatacept and/or sirolimus.
Conclusions: Loss of intestinal microbial diversity and dysbiosis causing metabolomic changes was observed in CTLA4-D. Albeit some of these features were shared with CVID, the distinct changes associated with CTLA4-D highlight the fact that IEI-associated microbiome changes likely reflect the underlying immune dysregulation. Identified candidate intestinal microbial and metabolic biomarkers distinguishing individuals with CTLA4-D based on severity should be studied prospectively to determine their predictive value, and investigated as potential therapeutic ta. Video Abstract.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.