Habitat fragmentation enhances microbial collective defence.

IF 3.7 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2025-02-01 Epub Date: 2025-02-12 DOI:10.1098/rsif.2024.0611
Nia Verdon, Ofelia Popescu, Simon Titmuss, Rosalind J Allen
{"title":"Habitat fragmentation enhances microbial collective defence.","authors":"Nia Verdon, Ofelia Popescu, Simon Titmuss, Rosalind J Allen","doi":"10.1098/rsif.2024.0611","DOIUrl":null,"url":null,"abstract":"<p><p>Microbes often inhabit complex, spatially partitioned environments such as host tissue or soil, but the effects of habitat fragmentation on microbial ecology and infection dynamics are poorly understood. Here, we investigate how habitat fragmentation impacts a prevalent microbial collective defence mechanism: enzymatic degradation of an environmental toxin. Using a theoretical model, we predict that habitat fragmentation can strongly enhance the collective benefits of enzymatic toxin degradation. For the example of [Formula: see text]-lactamase-producing bacteria that mount a collective defence by degrading a [Formula: see text]-lactam antibiotic, we find that realistic levels of habitat fragmentation can allow a population to survive antibiotic doses that greatly exceed those required to kill a non-fragmented population. This 'habitat-fragmentation rescue' is a stochastic effect that originates from variation in bacterial density among different subpopulations and demographic noise. We also study the contrasting case of collective enzymatic foraging, where enzyme activity releases nutrients from the environment; here we find that increasing habitat fragmentation decreases the lag time for population growth but does not change the ecological outcome. Taken together, this work predicts that stochastic effects arising from habitat fragmentation can greatly enhance the effectiveness of microbial collective defence via enzymatic toxin degradation.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 223","pages":"20240611"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813583/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0611","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Microbes often inhabit complex, spatially partitioned environments such as host tissue or soil, but the effects of habitat fragmentation on microbial ecology and infection dynamics are poorly understood. Here, we investigate how habitat fragmentation impacts a prevalent microbial collective defence mechanism: enzymatic degradation of an environmental toxin. Using a theoretical model, we predict that habitat fragmentation can strongly enhance the collective benefits of enzymatic toxin degradation. For the example of [Formula: see text]-lactamase-producing bacteria that mount a collective defence by degrading a [Formula: see text]-lactam antibiotic, we find that realistic levels of habitat fragmentation can allow a population to survive antibiotic doses that greatly exceed those required to kill a non-fragmented population. This 'habitat-fragmentation rescue' is a stochastic effect that originates from variation in bacterial density among different subpopulations and demographic noise. We also study the contrasting case of collective enzymatic foraging, where enzyme activity releases nutrients from the environment; here we find that increasing habitat fragmentation decreases the lag time for population growth but does not change the ecological outcome. Taken together, this work predicts that stochastic effects arising from habitat fragmentation can greatly enhance the effectiveness of microbial collective defence via enzymatic toxin degradation.

栖息地破碎化增强了微生物的集体防御。
微生物通常栖息在复杂的、空间分割的环境中,如宿主组织或土壤,但栖息地破碎化对微生物生态和感染动力学的影响尚不清楚。在这里,我们研究栖息地破碎化如何影响普遍存在的微生物集体防御机制:环境毒素的酶降解。利用理论模型,我们预测栖息地破碎化可以强烈增强酶毒素降解的集体效益。以[公式:见文本]-内酰胺酶产生细菌通过降解[公式:见文本]-内酰胺抗生素形成集体防御为例,我们发现,栖息地碎片化的现实水平可以使一个种群在抗生素剂量大大超过杀死非碎片化种群所需剂量的情况下存活下来。这种“栖息地碎片化拯救”是一种随机效应,源于不同亚群之间细菌密度的变化和人口统计学噪声。我们还研究了集体酶觅食的对比案例,其中酶活性从环境中释放营养;研究发现,栖息地破碎化程度的增加减少了种群增长的滞后时间,但并未改变生态结果。综上所述,这项工作预测了栖息地破碎化产生的随机效应可以通过酶毒素降解极大地增强微生物集体防御的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信