Khloe S Gordon, Caleb R Perez, Andrea Garmilla, Maxine S Y Lam, Joey J Y Aw, Anisha Datta, Douglas A Lauffenburger, Andrea Pavesi, Michael E Birnbaum
{"title":"Pooled screening for CAR function identifies novel IL-13Rα2-targeted CARs for treatment of glioblastoma.","authors":"Khloe S Gordon, Caleb R Perez, Andrea Garmilla, Maxine S Y Lam, Joey J Y Aw, Anisha Datta, Douglas A Lauffenburger, Andrea Pavesi, Michael E Birnbaum","doi":"10.1136/jitc-2024-009574","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chimeric antigen receptor (CAR) therapies have demonstrated potent efficacy in treating B-cell malignancies, but have yet to meaningfully translate to solid tumors. Nonetheless, they are of particular interest for the treatment of glioblastoma, which is an aggressive form of brain cancer with few effective therapeutic options, due to their ability to cross the highly selective blood-brain barrier.</p><p><strong>Methods: </strong>Here, we use our pooled screening platform, CARPOOL, to expedite the discovery of CARs with antitumor functions necessary for solid tumor efficacy. We performed selections in primary human T cells expressing a library of 1.3×10<sup>6</sup> third generation CARs targeting IL-13Rα2, a cancer testis antigen commonly expressed in glioblastoma. Selections were performed for cytotoxicity, proliferation, memory formation, and persistence on repeated antigen challenge.</p><p><strong>Results: </strong>Each enriched CAR robustly produced the phenotype for which it was selected, and one enriched CAR triggered potent cytotoxicity and long-term proliferation on in vitro tumor rechallenge. It also showed significantly improved persistence and comparable tumor control in a microphysiological human in vitro model and a xenograft model of human glioblastoma, but also demonstrated increased off-target recognition of IL-13Rα1.</p><p><strong>Conclusion: </strong>Taken together, this work demonstrates the utility of extending CARPOOL to diseases beyond hematological malignancies and represents the largest exploration of signaling combinations in human primary cells to date.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 2","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11815465/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Immunotherapy of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jitc-2024-009574","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Chimeric antigen receptor (CAR) therapies have demonstrated potent efficacy in treating B-cell malignancies, but have yet to meaningfully translate to solid tumors. Nonetheless, they are of particular interest for the treatment of glioblastoma, which is an aggressive form of brain cancer with few effective therapeutic options, due to their ability to cross the highly selective blood-brain barrier.
Methods: Here, we use our pooled screening platform, CARPOOL, to expedite the discovery of CARs with antitumor functions necessary for solid tumor efficacy. We performed selections in primary human T cells expressing a library of 1.3×106 third generation CARs targeting IL-13Rα2, a cancer testis antigen commonly expressed in glioblastoma. Selections were performed for cytotoxicity, proliferation, memory formation, and persistence on repeated antigen challenge.
Results: Each enriched CAR robustly produced the phenotype for which it was selected, and one enriched CAR triggered potent cytotoxicity and long-term proliferation on in vitro tumor rechallenge. It also showed significantly improved persistence and comparable tumor control in a microphysiological human in vitro model and a xenograft model of human glioblastoma, but also demonstrated increased off-target recognition of IL-13Rα1.
Conclusion: Taken together, this work demonstrates the utility of extending CARPOOL to diseases beyond hematological malignancies and represents the largest exploration of signaling combinations in human primary cells to date.
期刊介绍:
The Journal for ImmunoTherapy of Cancer (JITC) is a peer-reviewed publication that promotes scientific exchange and deepens knowledge in the constantly evolving fields of tumor immunology and cancer immunotherapy. With an open access format, JITC encourages widespread access to its findings. The journal covers a wide range of topics, spanning from basic science to translational and clinical research. Key areas of interest include tumor-host interactions, the intricate tumor microenvironment, animal models, the identification of predictive and prognostic immune biomarkers, groundbreaking pharmaceutical and cellular therapies, innovative vaccines, combination immune-based treatments, and the study of immune-related toxicity.