GPX3 as a Novel and Potential Therapeutic Target in the Shared Molecular Mechanisms of Traumatic Brain Injury and Parkinson's Disease.

IF 4.2 2区 医学 Q2 IMMUNOLOGY
Journal of Inflammation Research Pub Date : 2025-02-07 eCollection Date: 2025-01-01 DOI:10.2147/JIR.S506891
Yue Wang, Jiang Fang, Qiang Yuan, Jian Yu, Jin Hu
{"title":"GPX3 as a Novel and Potential Therapeutic Target in the Shared Molecular Mechanisms of Traumatic Brain Injury and Parkinson's Disease.","authors":"Yue Wang, Jiang Fang, Qiang Yuan, Jian Yu, Jin Hu","doi":"10.2147/JIR.S506891","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Traumatic brain injury (TBI) is a prevalent neurological disorder associated with significant public health burdens and long-term risks, including neurodegenerative diseases such as Parkinson's disease (PD). Emerging evidence suggests a strong link between moderate to severe TBI and an elevated risk of PD, though the underlying mechanisms remain poorly understood.</p><p><strong>Materials and methods: </strong>Common differentially expressed genes (DEGs) were identified in GEO datasets of patients with traumatic brain injury (TBI) and Parkinson's disease (PD). Further analyses, including GO and KEGG pathway enrichment, protein-protein interaction (PPI) network construction, hub gene identification, as well as miRNA and transcription factor prediction and drug candidate screening, were conducted. Subsequently, the expression of hub genes was validated using additional TBI- and PD-related GEO datasets and the Comparative Toxicogenomics Database (CTD). Finally, the expression of hub genes was further validated in a mouse model of TBI induced by controlled cortical impact (CCI).</p><p><strong>Results: </strong>Shared transcriptional signatures between TBI and PD were uncovered, highlighting overlapping molecular networks and pathways. The glutathione peroxidase 3 (GPX3) gene emerged as a pivotal hub gene, with its expression significantly altered in both TBI and PD datasets.</p><p><strong>Conclusion: </strong>This study underscores the critical role of GPX3 in the molecular intersection of TBI and PD, suggesting it as a novel and potential therapeutic target, offering new insights into potential therapeutic strategies.</p>","PeriodicalId":16107,"journal":{"name":"Journal of Inflammation Research","volume":"18 ","pages":"1911-1928"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11812561/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JIR.S506891","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Traumatic brain injury (TBI) is a prevalent neurological disorder associated with significant public health burdens and long-term risks, including neurodegenerative diseases such as Parkinson's disease (PD). Emerging evidence suggests a strong link between moderate to severe TBI and an elevated risk of PD, though the underlying mechanisms remain poorly understood.

Materials and methods: Common differentially expressed genes (DEGs) were identified in GEO datasets of patients with traumatic brain injury (TBI) and Parkinson's disease (PD). Further analyses, including GO and KEGG pathway enrichment, protein-protein interaction (PPI) network construction, hub gene identification, as well as miRNA and transcription factor prediction and drug candidate screening, were conducted. Subsequently, the expression of hub genes was validated using additional TBI- and PD-related GEO datasets and the Comparative Toxicogenomics Database (CTD). Finally, the expression of hub genes was further validated in a mouse model of TBI induced by controlled cortical impact (CCI).

Results: Shared transcriptional signatures between TBI and PD were uncovered, highlighting overlapping molecular networks and pathways. The glutathione peroxidase 3 (GPX3) gene emerged as a pivotal hub gene, with its expression significantly altered in both TBI and PD datasets.

Conclusion: This study underscores the critical role of GPX3 in the molecular intersection of TBI and PD, suggesting it as a novel and potential therapeutic target, offering new insights into potential therapeutic strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inflammation Research
Journal of Inflammation Research Immunology and Microbiology-Immunology
CiteScore
6.10
自引率
2.20%
发文量
658
审稿时长
16 weeks
期刊介绍: An international, peer-reviewed, open access, online journal that welcomes laboratory and clinical findings on the molecular basis, cell biology and pharmacology of inflammation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信