Stimulation of macrophage cell lines confined with silica and/or silicon particles and embedded in structured collagen gels.

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Journal of Biomaterials Applications Pub Date : 2025-05-01 Epub Date: 2025-02-11 DOI:10.1177/08853282251319875
Pedro U Muñoz-González, Jorge Delgado, Gerardo González-García, Birzabith Mendoza-Novelo
{"title":"Stimulation of macrophage cell lines confined with silica and/or silicon particles and embedded in structured collagen gels.","authors":"Pedro U Muñoz-González, Jorge Delgado, Gerardo González-García, Birzabith Mendoza-Novelo","doi":"10.1177/08853282251319875","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages encapsulated in composite gels are subjected to a three-dimensional (3D) microenvironment and material-related stimuli that allow modulation of their phenotypes. Herein, 3D collagen fibrillar networks structured with di- or tri-functionalized oligourethanes, including Si-O or Si-Si particles confined therein, are compared regarding their physicochemical properties and material-guided macrophage activation. Gelation kinetics, degradation/swelling, and rheometric results demonstrated that the properties of the composite gels depend on the oligourethane functionalization number (derived from diols/triols and L-Lysine diisocyanate, LDI) and silica incorporation. Human or murine macrophages seeded or encapsulated in the composite gels showed good viability and the adoption of an anti-inflammatory phenotype in response to the silica in the composite gel, showing accelerated gelation when cell culture components are present in the liquid precursors. An increase in cell viability proportional to the storage modulus was observed. ELISA tests strongly suggest that the Si-Si nanoparticles in the composites can antagonize the pro-inflammatory stimulation with lipopolysaccharides (LPS) and interferon-gamma (IFNγ), even promoting an anti-inflammatory response in embedded cells after 24 h. Silicon-doped and crosslinked collagen gels have good potential to modulate macrophage inflammatory response, serving as a 3D immunomodulatory scaffold.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"1240-1257"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251319875","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Macrophages encapsulated in composite gels are subjected to a three-dimensional (3D) microenvironment and material-related stimuli that allow modulation of their phenotypes. Herein, 3D collagen fibrillar networks structured with di- or tri-functionalized oligourethanes, including Si-O or Si-Si particles confined therein, are compared regarding their physicochemical properties and material-guided macrophage activation. Gelation kinetics, degradation/swelling, and rheometric results demonstrated that the properties of the composite gels depend on the oligourethane functionalization number (derived from diols/triols and L-Lysine diisocyanate, LDI) and silica incorporation. Human or murine macrophages seeded or encapsulated in the composite gels showed good viability and the adoption of an anti-inflammatory phenotype in response to the silica in the composite gel, showing accelerated gelation when cell culture components are present in the liquid precursors. An increase in cell viability proportional to the storage modulus was observed. ELISA tests strongly suggest that the Si-Si nanoparticles in the composites can antagonize the pro-inflammatory stimulation with lipopolysaccharides (LPS) and interferon-gamma (IFNγ), even promoting an anti-inflammatory response in embedded cells after 24 h. Silicon-doped and crosslinked collagen gels have good potential to modulate macrophage inflammatory response, serving as a 3D immunomodulatory scaffold.

用二氧化硅和/或硅颗粒封闭并包埋在结构化胶原凝胶中的巨噬细胞系的刺激。
包裹在复合凝胶中的巨噬细胞受到三维(3D)微环境和材料相关刺激,从而调节其表型。本文比较了由二官能化或三官能化的低聚氨基甲酸酯(包括Si-O或Si-Si颗粒)构成的三维胶原纤维网络的物理化学性质和材料引导的巨噬细胞活化。凝胶动力学、降解/膨胀和流变学结果表明,复合凝胶的性能取决于低聚聚氨酯功能化数(来自二醇/三醇和l -赖氨酸二异氰酸酯,LDI)和二氧化硅的掺入。在复合凝胶中植入或包封的人或小鼠巨噬细胞表现出良好的活力,并对复合凝胶中的二氧化硅产生抗炎表型的反应,当细胞培养成分存在于液体前体中时,显示出加速的凝胶化。观察到细胞活力的增加与储存模量成正比。ELISA测试强烈提示复合材料中的Si-Si纳米颗粒可以拮抗脂多糖(LPS)和干扰素γ (IFNγ)的促炎刺激,甚至在24 h后促进包埋细胞的抗炎反应。硅掺杂和交联胶原凝胶具有良好的调节巨噬细胞炎症反应的潜力,可作为3D免疫调节支架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信