Carboxymethylnaringenin: a promising antioxidant in the aqueous physiological environment.

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Free Radical Research Pub Date : 2025-02-01 Epub Date: 2025-02-14 DOI:10.1080/10715762.2025.2466685
Quan V Vo, Nguyen Thi Hoa, Adam Mechler
{"title":"Carboxymethylnaringenin: a promising antioxidant in the aqueous physiological environment.","authors":"Quan V Vo, Nguyen Thi Hoa, Adam Mechler","doi":"10.1080/10715762.2025.2466685","DOIUrl":null,"url":null,"abstract":"<p><p>The synthetic naringenin derivative (2S)-8-carboxymethylnaringenin (<b>CMN</b>) was developed for the treatment of bacterial and viral respiratory infections. There are indications that <b>CMN</b> may act as an antioxidant, however, no studies have been conducted in this regard. This work is aimed at assessing the antiradical capacity of <b>CMN</b> against various physiologically relevant species in physiological environments by using thermodynamic and kinetic calculations. According to the results, <b>CMN</b> only exhibits modest HOO<sup>•</sup> antiradical activity in lipid medium, modeled here as pentyl ethanoate solvent, with an overall rate constant (<i>k</i><sub>overall</sub>) of 2.01 × 10<sup>2</sup> M<sup>-1</sup> s<sup>-1</sup>. However, significant antiradical activity is predicted for the aqueous medium (<i>k</i><sub>overall</sub> = 2.60 × 10<sup>5</sup> M<sup>-1</sup>s<sup>-1</sup>) that is equivalent to the activity of the reference antioxidant Trolox. In a screen performed on a range of radicals, HO<sup>•</sup>, NO<sub>2</sub>, SO<sub>4</sub><sup>•-</sup>, N<sub>3</sub><sup>•</sup>, CH<sub>3</sub>O<sup>•</sup>, CCl<sub>3</sub>O<sup>•</sup>, CH<sub>3</sub>OO<sup>•,</sup> and CCl<sub>3</sub>OO<sup>•</sup> were also successfully scavenged by <b>CMN</b> in water at physiological pH. Therefore, other than a potent drug, <b>CMN</b> is also a good antioxidant in polar environments.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"183-189"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2025.2466685","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The synthetic naringenin derivative (2S)-8-carboxymethylnaringenin (CMN) was developed for the treatment of bacterial and viral respiratory infections. There are indications that CMN may act as an antioxidant, however, no studies have been conducted in this regard. This work is aimed at assessing the antiradical capacity of CMN against various physiologically relevant species in physiological environments by using thermodynamic and kinetic calculations. According to the results, CMN only exhibits modest HOO antiradical activity in lipid medium, modeled here as pentyl ethanoate solvent, with an overall rate constant (koverall) of 2.01 × 102 M-1 s-1. However, significant antiradical activity is predicted for the aqueous medium (koverall = 2.60 × 105 M-1s-1) that is equivalent to the activity of the reference antioxidant Trolox. In a screen performed on a range of radicals, HO, NO2, SO4•-, N3, CH3O, CCl3O, CH3OO•, and CCl3OO were also successfully scavenged by CMN in water at physiological pH. Therefore, other than a potent drug, CMN is also a good antioxidant in polar environments.

羧甲基柚皮素:一种在水生理环境中很有前途的抗氧化剂。
合成柚皮素衍生物(2S)-8-羧甲基柚皮素(CMN),用于治疗细菌性和病毒性呼吸道感染。有迹象表明,CMN可能作为一种抗氧化剂,然而,在这方面还没有做过研究。本工作旨在通过热力学和动力学计算来评估CMN在生理环境中对各种生理相关物种的抗自由基能力。结果表明,CMN在脂质介质中仅表现出适度的HOO•抗自由基活性,模型为戊乙醇酸溶剂,总速率常数(koverall)为2.01 × 102 M-1 s-1。然而,预测在水介质(koverall = 2.60 × 105 M-1s-1)中具有显著的抗自由基活性,与参考抗氧化剂Trolox的活性相当。在对一系列自由基进行的筛选中,在生理ph下,水中的HO•、NO2、SO4•-、N3•、ch30•、ccl30•、ch300•和ccl300•也被CMN成功清除。因此,CMN除了是一种有效的药物外,在极性环境中也是一种很好的抗氧化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Free Radical Research
Free Radical Research 生物-生化与分子生物学
CiteScore
6.70
自引率
0.00%
发文量
47
审稿时长
3 months
期刊介绍: Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信