Joshua A Reynolds, Lola Torz, Leslie Cummins, Ariel D Stock, Ayal Ben-Zvi, Chaim Putterman
{"title":"Blood-CSF barrier clearance of ABC transporter substrates is suppressed by interleukin-6 in lupus choroid plexus spheroids.","authors":"Joshua A Reynolds, Lola Torz, Leslie Cummins, Ariel D Stock, Ayal Ben-Zvi, Chaim Putterman","doi":"10.1186/s12987-025-00628-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The choroid plexus (CP) has been recently implicated in the pathogenesis of the neuropsychiatric manifestations of systemic lupus erythematosus (NPSLE). Lupus patients demonstrate increased serum and cerebrospinal fluid (CSF) concentrations of interleukin-6 (IL-6), which can disrupt vital blood-CSF barrier (B-CSFB) functions performed by the CP. However, difficulty accessing this tissue has largely precluded dynamic imaging or evaluation of CP barrier function in vivo.</p><p><strong>Methods: </strong>In this study, explant CP spheroids which replicate the functional and structural properties of the B-CSFB were generated from 12 + week old female MRL/lpr (IL-6 wildtype; IL-6 WT) lupus mice, IL-6 knockout (IL-6 KO) MRL/lpr mice, and congenic control MRL/mpj mice. CP spheroids derived from IL-6 WT MRL/lpr mice were found to synthesize and secrete IL-6, similar to the CP in vivo, whereas the IL-6 KO spheroids did not produce IL-6. Accumulation of different fluorescent tracers within the central CSF-like fluid vacuole of spheroids, modeling brain ventricles, was measured to probe transcellular permeability, paracellular diffusion, and clearance functions of the CP.</p><p><strong>Results: </strong>As shown by blocking the IL-6 receptor in IL-6 WT spheroids or comparing them to IL-6 KO spheroids, IL-6 signaling decreased spheroid clearance of methotrexate, a chemotherapeutic drug employed in the therapy of lupus, and lucifer yellow. This suppression occurred without altering CP epithelial morphology and ultrastructure. Methotrexate and lucifer yellow efflux can occur through ATP-binding cassette (ABC) transporters, including BCRP and MRP1. Cytoplasmic accumulation of the ABC-specific dye fluorescein diacetate was also increased by IL-6. Pharmacologic inhibition of either BCRP or MRP1 in IL-6 KO spheroids was sufficient to recreate the clearance deficits observed in IL-6 WT spheroids. Moreover, CP expression of BCRP was significantly lower in IL-6 WT mice.</p><p><strong>Conclusions: </strong>In this study, we establish, validate, and apply a CP spheroid model to the study of B-CSFB function in lupus. Our results show that IL-6, a key cytokine increased in NPSLE, can potentially suppress the CP-specific function and expression of BCRP and MRP1. Therefore, IL-6 could affect the CSF clearance of inflammatory substrates (e.g., leukotrienes), the accumulation of which would incite neurotoxicity and promote progression of NPSLE.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"22 1","pages":"15"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11816793/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-025-00628-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The choroid plexus (CP) has been recently implicated in the pathogenesis of the neuropsychiatric manifestations of systemic lupus erythematosus (NPSLE). Lupus patients demonstrate increased serum and cerebrospinal fluid (CSF) concentrations of interleukin-6 (IL-6), which can disrupt vital blood-CSF barrier (B-CSFB) functions performed by the CP. However, difficulty accessing this tissue has largely precluded dynamic imaging or evaluation of CP barrier function in vivo.
Methods: In this study, explant CP spheroids which replicate the functional and structural properties of the B-CSFB were generated from 12 + week old female MRL/lpr (IL-6 wildtype; IL-6 WT) lupus mice, IL-6 knockout (IL-6 KO) MRL/lpr mice, and congenic control MRL/mpj mice. CP spheroids derived from IL-6 WT MRL/lpr mice were found to synthesize and secrete IL-6, similar to the CP in vivo, whereas the IL-6 KO spheroids did not produce IL-6. Accumulation of different fluorescent tracers within the central CSF-like fluid vacuole of spheroids, modeling brain ventricles, was measured to probe transcellular permeability, paracellular diffusion, and clearance functions of the CP.
Results: As shown by blocking the IL-6 receptor in IL-6 WT spheroids or comparing them to IL-6 KO spheroids, IL-6 signaling decreased spheroid clearance of methotrexate, a chemotherapeutic drug employed in the therapy of lupus, and lucifer yellow. This suppression occurred without altering CP epithelial morphology and ultrastructure. Methotrexate and lucifer yellow efflux can occur through ATP-binding cassette (ABC) transporters, including BCRP and MRP1. Cytoplasmic accumulation of the ABC-specific dye fluorescein diacetate was also increased by IL-6. Pharmacologic inhibition of either BCRP or MRP1 in IL-6 KO spheroids was sufficient to recreate the clearance deficits observed in IL-6 WT spheroids. Moreover, CP expression of BCRP was significantly lower in IL-6 WT mice.
Conclusions: In this study, we establish, validate, and apply a CP spheroid model to the study of B-CSFB function in lupus. Our results show that IL-6, a key cytokine increased in NPSLE, can potentially suppress the CP-specific function and expression of BCRP and MRP1. Therefore, IL-6 could affect the CSF clearance of inflammatory substrates (e.g., leukotrienes), the accumulation of which would incite neurotoxicity and promote progression of NPSLE.
期刊介绍:
"Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease.
At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).