Jessica M L Grittner, Rebecca Barok, Edgar Juarez Lopez, Misha Shah, Brendan J Dougherty
{"title":"Age and estrogen-associated reductions in hypoxic ventilatory response and chemosensitivity in female rats.","authors":"Jessica M L Grittner, Rebecca Barok, Edgar Juarez Lopez, Misha Shah, Brendan J Dougherty","doi":"10.3389/fphys.2024.1511960","DOIUrl":null,"url":null,"abstract":"<p><p>Respiratory function is modulated by circulating steroid hormones. In female rats, steroid hormones fluctuate across the normal estrous cycle and decline with age, similar to human menopause. To determine the influence of steroid hormones, and mimic aspects of age-related reductions in hormones, the ovariectomy model is often employed. Ovariectomy (OVX) induces an immediate and persistent decrease in steroid hormones. The current study aimed to interrogate whether the OVX model of hormone reduction impacted specific aspects of respiratory function [chemosensitivity and the hypoxic ventilatory response (HVR)] in a manner consistent with natural age-related declines in hormones. Using barometric plethysmography, three experimental groups of female rats were assessed for HVR, chemosensitivity, and respiratory neural drive during progressive hypoxic challenges (FIO<sub>2</sub>: 0.15, 0.12, and 0.09): young (3-5 mos. old; in proestrus; n = 10), young OVX (3-5 mos. old; n = 10), and aged (>20 mos. old; n = 10). Our findings indicted that sex hormone loss did not appear to impact chemosensitivity or neural drive. Natural aging, but not OVX, resulted in decreased HVR as well as reduced magnitude in ventilatory output during stepwise hypoxia. Differences in metabolism were important to the interpretation of these results. Collectively, these data support the concept that aging impacts female respiratory function in complex and unique ways that differ from OVX.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":"15 ","pages":"1511960"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810928/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphys.2024.1511960","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Respiratory function is modulated by circulating steroid hormones. In female rats, steroid hormones fluctuate across the normal estrous cycle and decline with age, similar to human menopause. To determine the influence of steroid hormones, and mimic aspects of age-related reductions in hormones, the ovariectomy model is often employed. Ovariectomy (OVX) induces an immediate and persistent decrease in steroid hormones. The current study aimed to interrogate whether the OVX model of hormone reduction impacted specific aspects of respiratory function [chemosensitivity and the hypoxic ventilatory response (HVR)] in a manner consistent with natural age-related declines in hormones. Using barometric plethysmography, three experimental groups of female rats were assessed for HVR, chemosensitivity, and respiratory neural drive during progressive hypoxic challenges (FIO2: 0.15, 0.12, and 0.09): young (3-5 mos. old; in proestrus; n = 10), young OVX (3-5 mos. old; n = 10), and aged (>20 mos. old; n = 10). Our findings indicted that sex hormone loss did not appear to impact chemosensitivity or neural drive. Natural aging, but not OVX, resulted in decreased HVR as well as reduced magnitude in ventilatory output during stepwise hypoxia. Differences in metabolism were important to the interpretation of these results. Collectively, these data support the concept that aging impacts female respiratory function in complex and unique ways that differ from OVX.
期刊介绍:
Frontiers in Physiology is a leading journal in its field, publishing rigorously peer-reviewed research on the physiology of living systems, from the subcellular and molecular domains to the intact organism, and its interaction with the environment. Field Chief Editor George E. Billman at the Ohio State University Columbus is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.