Quantifying multilabeled brain cells in the whole prefrontal cortex reveals reduced inhibitory and a subtype of excitatory neuronal marker expression in serotonin transporter knockout rats.

IF 2.9 2区 医学 Q2 NEUROSCIENCES
Chao Ciu-Gwok Guo, Yifan Xu, Ling Shan, Kyriaki Foka, Simone Memoli, Calum Mulveen, Barend Gijsbrechts, Michel M Verheij, Judith R Homberg
{"title":"Quantifying multilabeled brain cells in the whole prefrontal cortex reveals reduced inhibitory and a subtype of excitatory neuronal marker expression in serotonin transporter knockout rats.","authors":"Chao Ciu-Gwok Guo, Yifan Xu, Ling Shan, Kyriaki Foka, Simone Memoli, Calum Mulveen, Barend Gijsbrechts, Michel M Verheij, Judith R Homberg","doi":"10.1093/cercor/bhae486","DOIUrl":null,"url":null,"abstract":"<p><p>The prefrontal cortex regulates emotions and is influenced by serotonin. Rodents lacking the serotonin transporter (5-HTT) show increased anxiety and changes in excitatory and inhibitory cell markers in the prefrontal cortex. However, these observations are constrained by limitations in brain representation and cell segmentation, as standard immunohistochemistry is inadequate to consider volume variations in regions of interest. We utilized the deep learning network of the StarDist method in combination with novel open-source methods for automated cell counts in a wide range of prefrontal cortex subregions. We found that 5-HTT knockout rats displayed increased anxiety and diminished relative numbers of subclass excitatory VGluT2+ and activated ΔFosB+ cells in the infralimbic and prelimbic cortices and of inhibitory GAD67+ cells in the prelimbic cortex. Anxiety levels and ΔFosB cell counts were positively correlated in wild-type, but not in knockout, rats. In conclusion, we present a novel method to quantify whole brain subregions of multilabeled cells in animal models and demonstrate reduced excitatory and inhibitory neuronal marker expression in prefrontal cortex subregions of 5-HTT knockout rats.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhae486","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The prefrontal cortex regulates emotions and is influenced by serotonin. Rodents lacking the serotonin transporter (5-HTT) show increased anxiety and changes in excitatory and inhibitory cell markers in the prefrontal cortex. However, these observations are constrained by limitations in brain representation and cell segmentation, as standard immunohistochemistry is inadequate to consider volume variations in regions of interest. We utilized the deep learning network of the StarDist method in combination with novel open-source methods for automated cell counts in a wide range of prefrontal cortex subregions. We found that 5-HTT knockout rats displayed increased anxiety and diminished relative numbers of subclass excitatory VGluT2+ and activated ΔFosB+ cells in the infralimbic and prelimbic cortices and of inhibitory GAD67+ cells in the prelimbic cortex. Anxiety levels and ΔFosB cell counts were positively correlated in wild-type, but not in knockout, rats. In conclusion, we present a novel method to quantify whole brain subregions of multilabeled cells in animal models and demonstrate reduced excitatory and inhibitory neuronal marker expression in prefrontal cortex subregions of 5-HTT knockout rats.

对整个前额叶皮层的多标记脑细胞进行定量分析发现,5-羟色胺转运体基因敲除大鼠的抑制性和一种亚型兴奋性神经元标记表达减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cerebral cortex
Cerebral cortex 医学-神经科学
CiteScore
6.30
自引率
8.10%
发文量
510
审稿时长
2 months
期刊介绍: Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included. The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信