Translational Informatics Driven Drug Repositioning for Neurodegenerative Disease.

IF 4.8 2区 医学 Q1 NEUROSCIENCES
Xin Zheng, Jing Chen, Yuxin Zhang, Shanshan Hu, Cheng Bi, Rajeev K Singla, Mohammad Amjad Kamal, Katsuhisa Horimoto, Bairong Shen
{"title":"Translational Informatics Driven Drug Repositioning for Neurodegenerative Disease.","authors":"Xin Zheng, Jing Chen, Yuxin Zhang, Shanshan Hu, Cheng Bi, Rajeev K Singla, Mohammad Amjad Kamal, Katsuhisa Horimoto, Bairong Shen","doi":"10.2174/011570159X327908241121062335","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases represent a prevalent category of age-associated diseases. As human lifespans extend and societies become increasingly aged, neurodegenerative diseases pose a growing threat to public health. The lack of effective therapeutic drugs for both common and rare neurodegenerative diseases amplifies the medical challenges they present. Current treatments for these diseases primarily offer symptomatic relief rather than a cure, underscoring the pressing need to develop efficacious therapeutic interventions. Drug repositioning, an innovative and data-driven approach to research and development, proposes the re-evaluation of existing drugs for potential application in new therapeutic areas. Fueled by rapid advancements in artificial intelligence and the burgeoning accumulation of medical data, drug repositioning has emerged as a promising pathway for drug discovery. This review comprehensively examines drug repositioning for neurodegenerative diseases through the lens of translational informatics, encompassing data sources, computational models, and clinical applications. Initially, we systematized drug repositioning-related databases and online platforms, focusing on data resource management and standardization. Subsequently, we classify computational models for drug repositioning from the perspectives of drug-drug, drug-target, and drug-disease interactions into categories such as machine learning, deep learning, and networkbased approaches. Lastly, we highlight computational models presently utilized in neurodegenerative disease research and identify databases that hold potential for future drug repositioning efforts. In the artificial intelligence era, drug repositioning, as a data-driven strategy, offers a promising avenue for developing treatments suited to the complex and multifaceted nature of neurodegenerative diseases. These advancements could furnish patients with more rapid, cost-effective therapeutic options.</p>","PeriodicalId":10905,"journal":{"name":"Current Neuropharmacology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/011570159X327908241121062335","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Neurodegenerative diseases represent a prevalent category of age-associated diseases. As human lifespans extend and societies become increasingly aged, neurodegenerative diseases pose a growing threat to public health. The lack of effective therapeutic drugs for both common and rare neurodegenerative diseases amplifies the medical challenges they present. Current treatments for these diseases primarily offer symptomatic relief rather than a cure, underscoring the pressing need to develop efficacious therapeutic interventions. Drug repositioning, an innovative and data-driven approach to research and development, proposes the re-evaluation of existing drugs for potential application in new therapeutic areas. Fueled by rapid advancements in artificial intelligence and the burgeoning accumulation of medical data, drug repositioning has emerged as a promising pathway for drug discovery. This review comprehensively examines drug repositioning for neurodegenerative diseases through the lens of translational informatics, encompassing data sources, computational models, and clinical applications. Initially, we systematized drug repositioning-related databases and online platforms, focusing on data resource management and standardization. Subsequently, we classify computational models for drug repositioning from the perspectives of drug-drug, drug-target, and drug-disease interactions into categories such as machine learning, deep learning, and networkbased approaches. Lastly, we highlight computational models presently utilized in neurodegenerative disease research and identify databases that hold potential for future drug repositioning efforts. In the artificial intelligence era, drug repositioning, as a data-driven strategy, offers a promising avenue for developing treatments suited to the complex and multifaceted nature of neurodegenerative diseases. These advancements could furnish patients with more rapid, cost-effective therapeutic options.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Neuropharmacology
Current Neuropharmacology 医学-神经科学
CiteScore
8.70
自引率
1.90%
发文量
369
审稿时长
>12 weeks
期刊介绍: Current Neuropharmacology aims to provide current, comprehensive/mini reviews and guest edited issues of all areas of neuropharmacology and related matters of neuroscience. The reviews cover the fields of molecular, cellular, and systems/behavioural aspects of neuropharmacology and neuroscience. The journal serves as a comprehensive, multidisciplinary expert forum for neuropharmacologists and neuroscientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信