Wolbachia enhances the survival of Drosophila infected with fungal pathogens.

IF 4.4 1区 生物学 Q1 BIOLOGY
Jessamyn I Perlmutter, Aylar Atadurdyyeva, Margaret E Schedl, Robert L Unckless
{"title":"Wolbachia enhances the survival of Drosophila infected with fungal pathogens.","authors":"Jessamyn I Perlmutter, Aylar Atadurdyyeva, Margaret E Schedl, Robert L Unckless","doi":"10.1186/s12915-025-02130-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Wolbachia bacteria of arthropods are at the forefront of basic and translational research on multipartite host-symbiont-pathogen interactions. These vertically transmitted microbes are the most widespread endosymbionts on the planet due to factors including host reproductive manipulation and fitness benefits. Importantly, some strains of Wolbachia can inhibit viral pathogenesis within and between arthropod hosts. Mosquitoes carrying the wMel Wolbachia strain of Drosophila melanogaster have a greatly reduced capacity to spread viruses like dengue and Zika to humans. While significant research efforts have focused on viruses, relatively little attention has been given to Wolbachia-fungal interactions despite the ubiquity of fungal entomopathogens in nature.</p><p><strong>Results: </strong>Here, we demonstrate that Wolbachia increase the longevity of their Drosophila melanogaster hosts when challenged with a spectrum of yeast and filamentous fungal pathogens. We find that this pattern can vary based on host genotype, sex, and fungal species. Further, Wolbachia correlates with higher fertility and reduced pathogen titers during initial fungal infection, indicating a significant fitness benefit. Finally, RNA sequencing results show altered expression of many immune and stress response genes in the context of Wolbachia and fungal infection, suggesting host immunity may be involved in the mechanism.</p><p><strong>Conclusions: </strong>This study demonstrates Wolbachia's protective role in diverse fungal pathogen interactions and determines that the phenotype is broad, but with several variables that influence both the presence and strength of the phenotype. It also is a critical step forward to understanding how symbionts can protect their hosts from a variety of pathogens.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"42"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-025-02130-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Wolbachia bacteria of arthropods are at the forefront of basic and translational research on multipartite host-symbiont-pathogen interactions. These vertically transmitted microbes are the most widespread endosymbionts on the planet due to factors including host reproductive manipulation and fitness benefits. Importantly, some strains of Wolbachia can inhibit viral pathogenesis within and between arthropod hosts. Mosquitoes carrying the wMel Wolbachia strain of Drosophila melanogaster have a greatly reduced capacity to spread viruses like dengue and Zika to humans. While significant research efforts have focused on viruses, relatively little attention has been given to Wolbachia-fungal interactions despite the ubiquity of fungal entomopathogens in nature.

Results: Here, we demonstrate that Wolbachia increase the longevity of their Drosophila melanogaster hosts when challenged with a spectrum of yeast and filamentous fungal pathogens. We find that this pattern can vary based on host genotype, sex, and fungal species. Further, Wolbachia correlates with higher fertility and reduced pathogen titers during initial fungal infection, indicating a significant fitness benefit. Finally, RNA sequencing results show altered expression of many immune and stress response genes in the context of Wolbachia and fungal infection, suggesting host immunity may be involved in the mechanism.

Conclusions: This study demonstrates Wolbachia's protective role in diverse fungal pathogen interactions and determines that the phenotype is broad, but with several variables that influence both the presence and strength of the phenotype. It also is a critical step forward to understanding how symbionts can protect their hosts from a variety of pathogens.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信