Felipe Cabral-Miranda, Ana Paula Bergamo Araujo, Danilo Bilches Medinas, Flávia Carvalho Alcantara Gomes
{"title":"Astrocytic Hevin/SPARCL-1 Regulates Cognitive Decline in Pathological and Normal Brain Aging.","authors":"Felipe Cabral-Miranda, Ana Paula Bergamo Araujo, Danilo Bilches Medinas, Flávia Carvalho Alcantara Gomes","doi":"10.1111/acel.14493","DOIUrl":null,"url":null,"abstract":"<p><p>Dementia, characterized by loss of cognitive abilities in the elderly, poses a significant global health challenge. This study explores the role of astrocytes, one of most representative glial cells in the brain, in mitigating cognitive decline. Specifically, we investigated the impact of Hevin (also known as SPARC-like1/SPARCL-1), a secreted glycoprotein, on cognitive decline in both normal and pathological brain aging. By using adeno-associated viruses, we overexpressed Hevin in hippocampal astrocytes of middle-aged APP/PSEN mice, an established Alzheimer's disease (AD) model. Results demonstrated that Hevin overexpression attenuates cognitive decline, as evidenced by cognitive tests, increased pre- and postsynaptic markers colocalization, and altered expression of synaptic mediators, as revealed by proteomic profiling. Importantly, Hevin overexpression did not influence the deposition of Aβ plaques in the hippocampus, a hallmark of AD pathology. Furthermore, the study extended its findings to middle-aged wild-type animals, revealing improved cognitive performance following astrocytic Hevin overexpression. In conclusion, our results propose astrocytic Hevin as a potential therapeutic target for age-associated cognitive decline.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14493"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14493","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dementia, characterized by loss of cognitive abilities in the elderly, poses a significant global health challenge. This study explores the role of astrocytes, one of most representative glial cells in the brain, in mitigating cognitive decline. Specifically, we investigated the impact of Hevin (also known as SPARC-like1/SPARCL-1), a secreted glycoprotein, on cognitive decline in both normal and pathological brain aging. By using adeno-associated viruses, we overexpressed Hevin in hippocampal astrocytes of middle-aged APP/PSEN mice, an established Alzheimer's disease (AD) model. Results demonstrated that Hevin overexpression attenuates cognitive decline, as evidenced by cognitive tests, increased pre- and postsynaptic markers colocalization, and altered expression of synaptic mediators, as revealed by proteomic profiling. Importantly, Hevin overexpression did not influence the deposition of Aβ plaques in the hippocampus, a hallmark of AD pathology. Furthermore, the study extended its findings to middle-aged wild-type animals, revealing improved cognitive performance following astrocytic Hevin overexpression. In conclusion, our results propose astrocytic Hevin as a potential therapeutic target for age-associated cognitive decline.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.