{"title":"ZACN Associated with Poor Prognosis Promotes Proliferation of Kidney Renal Clear Cell Carcinoma Cells by Inhibiting JTC801-Induced Alkaliptosis.","authors":"Yifan Li, Can Li","doi":"10.1007/s12010-025-05197-1","DOIUrl":null,"url":null,"abstract":"<p><p>Alkaliptosis, crucial in various cancers, is a specific form of cell death. This study aims to screen a prognosis-related gene in kidney renal clear cell carcinoma (KIRC) using the alkaliptosis gene set and to investigate the roles of the gene in KIRC and its association with alkaliptosis. Transcriptome and clinical information of KIRC patients were collected from the TCGA-KIRC and GSE29609 database. We detected ZACN levels in normal kidney cells and KIRC cells and assessed the ZACN and JTC801-induced alkaliptosis relationship using immunoblotting and pH measurement. In the alkaliptosis gene set (IKBKB, NFKB1, CA9, CHUK, IKBKG, and RELA), NFKB1, CHUK, and IKBKG exhibited differential expression in TCGA-KIRC. Based on these three genes, two alkaliptosis patterns were identified in TCGA-KIRC. The independent prognostic gene for KIRC, ZACN, was screened. High ZACN in KIRC patients indicated a poor prognosis. ZACN was inversely related to the infiltration of anti-cancer immune cells such as CD4 + T cells, macrophages, and neutrophils, and it regulated the immune checkpoint and gene mutations. Patients characterized by high ZACN levels exhibited a heightened drug sensitivity to ABT737_1910, 5-Fluorouracil_1073, etc. ZACN expression in KIRC cells was increased relative to normal kidney cells and was inhibited in a concentration-dependent manner by JTC801. ZACN overexpression suppressed p-p65/p65 expression, increased expression of CA9, and lowered intracellular pH. In KIRC, ZACN inhibits JTC801-induced alkaliptosis. This study sheds light on a novel mechanism involving ZACN and alkaliptosis in KIRC, offering a promising avenue for further research and potential therapeutic interventions in KIRC management.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-025-05197-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alkaliptosis, crucial in various cancers, is a specific form of cell death. This study aims to screen a prognosis-related gene in kidney renal clear cell carcinoma (KIRC) using the alkaliptosis gene set and to investigate the roles of the gene in KIRC and its association with alkaliptosis. Transcriptome and clinical information of KIRC patients were collected from the TCGA-KIRC and GSE29609 database. We detected ZACN levels in normal kidney cells and KIRC cells and assessed the ZACN and JTC801-induced alkaliptosis relationship using immunoblotting and pH measurement. In the alkaliptosis gene set (IKBKB, NFKB1, CA9, CHUK, IKBKG, and RELA), NFKB1, CHUK, and IKBKG exhibited differential expression in TCGA-KIRC. Based on these three genes, two alkaliptosis patterns were identified in TCGA-KIRC. The independent prognostic gene for KIRC, ZACN, was screened. High ZACN in KIRC patients indicated a poor prognosis. ZACN was inversely related to the infiltration of anti-cancer immune cells such as CD4 + T cells, macrophages, and neutrophils, and it regulated the immune checkpoint and gene mutations. Patients characterized by high ZACN levels exhibited a heightened drug sensitivity to ABT737_1910, 5-Fluorouracil_1073, etc. ZACN expression in KIRC cells was increased relative to normal kidney cells and was inhibited in a concentration-dependent manner by JTC801. ZACN overexpression suppressed p-p65/p65 expression, increased expression of CA9, and lowered intracellular pH. In KIRC, ZACN inhibits JTC801-induced alkaliptosis. This study sheds light on a novel mechanism involving ZACN and alkaliptosis in KIRC, offering a promising avenue for further research and potential therapeutic interventions in KIRC management.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.