Identifying High Ionic Conductivity Compositions of Ionic Liquid Electrolytes Using Features of the Solvation Environment.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Amey Thorat, Ashutosh Kumar Verma, Rohit Chauhan, Rohan Sartape, Meenesh R Singh, Jindal K Shah
{"title":"Identifying High Ionic Conductivity Compositions of Ionic Liquid Electrolytes Using Features of the Solvation Environment.","authors":"Amey Thorat, Ashutosh Kumar Verma, Rohit Chauhan, Rohan Sartape, Meenesh R Singh, Jindal K Shah","doi":"10.1021/acs.jctc.4c01441","DOIUrl":null,"url":null,"abstract":"<p><p>Binary mixtures of ionic liquids with molecular solvents are gaining interest in electrochemical applications due to the improvement in their performance over neat ionic liquids. Dilution with suitable molecular solvents can reduce the viscosity and facilitate faster diffusion of ions, thereby yielding substantially higher ionic conductivity than that for a pure ionic liquid. Although viscosity and diffusion coefficients typically behave as monotonic functions of concentration, ionic conductivity often passes through a peak value at an optimum molar ratio of the molecular solvent to the ionic liquid. The ionic conductivity maximum is generally explained in terms of a balance between the ease of charge transport and the concentration of the charge carriers. In this work, fluctuation in the local environment surrounding an ion is invoked as a plausible explanation for the ionic conductivity mechanism with a binary mixture of 1-ethyl-3-methylimidazolium tetrafluoroborate and ethylene glycol as an example. The magnitude of the dynamism in the local environment is captured by measuring the spatial and temporal features of the solvation environment. Standard deviation in the number of ions in the solvation environment serves as a spatial feature, while the cage correlation lifetimes for oppositely charged ions within the first solvation shell serve as a temporal feature. Large standard deviations in the cluster ion population and short cage correlation lifetimes are indicators of highly dynamic ionic environment at the molecular level and consequently yield high ionic conductivity. Such compositions were found to be in good agreement with the optimum ionic liquid mole fractions obtained through experimental measurement. Short cage correlation lifetimes enable the identification of optimum mixture compositions using simulation trajectories significantly shorter than those required to implement the Nernst-Einstein or Einstein formalisms for calculating ionic conductivity. We validated the applicability of this approach across force fields and in six ionic liquid-molecular solvent electrolytes formed with combination of cations, anions, and solvents. We offer a computationally efficient approach of screening ionic liquid-molecular solvent binary mixture electrolytes to identify molar ratios that yield high ionic conductivity.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01441","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Binary mixtures of ionic liquids with molecular solvents are gaining interest in electrochemical applications due to the improvement in their performance over neat ionic liquids. Dilution with suitable molecular solvents can reduce the viscosity and facilitate faster diffusion of ions, thereby yielding substantially higher ionic conductivity than that for a pure ionic liquid. Although viscosity and diffusion coefficients typically behave as monotonic functions of concentration, ionic conductivity often passes through a peak value at an optimum molar ratio of the molecular solvent to the ionic liquid. The ionic conductivity maximum is generally explained in terms of a balance between the ease of charge transport and the concentration of the charge carriers. In this work, fluctuation in the local environment surrounding an ion is invoked as a plausible explanation for the ionic conductivity mechanism with a binary mixture of 1-ethyl-3-methylimidazolium tetrafluoroborate and ethylene glycol as an example. The magnitude of the dynamism in the local environment is captured by measuring the spatial and temporal features of the solvation environment. Standard deviation in the number of ions in the solvation environment serves as a spatial feature, while the cage correlation lifetimes for oppositely charged ions within the first solvation shell serve as a temporal feature. Large standard deviations in the cluster ion population and short cage correlation lifetimes are indicators of highly dynamic ionic environment at the molecular level and consequently yield high ionic conductivity. Such compositions were found to be in good agreement with the optimum ionic liquid mole fractions obtained through experimental measurement. Short cage correlation lifetimes enable the identification of optimum mixture compositions using simulation trajectories significantly shorter than those required to implement the Nernst-Einstein or Einstein formalisms for calculating ionic conductivity. We validated the applicability of this approach across force fields and in six ionic liquid-molecular solvent electrolytes formed with combination of cations, anions, and solvents. We offer a computationally efficient approach of screening ionic liquid-molecular solvent binary mixture electrolytes to identify molar ratios that yield high ionic conductivity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信