{"title":"Armored Regenerable Cilia.","authors":"Chuanqi Wei, Oleg V Gendelman, Youhua Jiang","doi":"10.1021/acsnano.4c17839","DOIUrl":null,"url":null,"abstract":"<p><p>Flexible cilia of natural species are well-known for their capabilities to transport objects by their collective motions. Therefore, well-ordered, flexible, and stimuli-responsive artificial cilia have been developed to render similar functionalities. However, flexibility and stimuli-responsiveness of a microcilium are inherently incompatible with durability/robustness against mechanical damage, limiting the artificial cilia to applications with only gentle operating conditions. The critical (but long neglected in surface engineering) property of natural hairs is that they are rooted under the skin, allowing the regeneration of the damaged hairs from their undamaged roots (hair follicles). To integrate the functionalities of cilia and hair, we developed a fabrication strategy called stencil-assisted self-alignment of iron-laden aerosols to produce a surface termed armored regenerable cilia. This surface contains well-ordered, appropriately packed, flexible, and magneto-responsive artificial wires rooted within pores. The wall of the pore serves as the armor to protect the bottom part of the wires from mechanical damage, allowing the remaining wires to regrow when the self-alignment of iron-laden aerosols repeats. The armored regenerable cilia with functionalities such as water repellency, object manipulation, and impurity removal are expected to guide the design and fabrication of smart surfaces serving real-life applications.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":"7317-7326"},"PeriodicalIF":16.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867016/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c17839","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible cilia of natural species are well-known for their capabilities to transport objects by their collective motions. Therefore, well-ordered, flexible, and stimuli-responsive artificial cilia have been developed to render similar functionalities. However, flexibility and stimuli-responsiveness of a microcilium are inherently incompatible with durability/robustness against mechanical damage, limiting the artificial cilia to applications with only gentle operating conditions. The critical (but long neglected in surface engineering) property of natural hairs is that they are rooted under the skin, allowing the regeneration of the damaged hairs from their undamaged roots (hair follicles). To integrate the functionalities of cilia and hair, we developed a fabrication strategy called stencil-assisted self-alignment of iron-laden aerosols to produce a surface termed armored regenerable cilia. This surface contains well-ordered, appropriately packed, flexible, and magneto-responsive artificial wires rooted within pores. The wall of the pore serves as the armor to protect the bottom part of the wires from mechanical damage, allowing the remaining wires to regrow when the self-alignment of iron-laden aerosols repeats. The armored regenerable cilia with functionalities such as water repellency, object manipulation, and impurity removal are expected to guide the design and fabrication of smart surfaces serving real-life applications.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.