Atomic-level Cu active sites enable energy-efficient CO2 electroreduction to multicarbon products in strong acid

0 CHEMISTRY, MULTIDISCIPLINARY
Lizhou Fan, Feng Li, Tianqi Liu, Jianan Erick Huang, Rui Kai Miao, Yu Yan, Shihui Feng, Cheuk-Wai Tai, Sung-Fu Hung, Hsin-Jung Tsai, Meng-Cheng Chen, Yang Bai, Dongha Kim, Sungjin Park, Panos Papangelakis, Chengqian Wu, Ali Shayesteh Zeraati, Roham Dorakhan, Licheng Sun, David Sinton, Edward Sargent
{"title":"Atomic-level Cu active sites enable energy-efficient CO2 electroreduction to multicarbon products in strong acid","authors":"Lizhou Fan, Feng Li, Tianqi Liu, Jianan Erick Huang, Rui Kai Miao, Yu Yan, Shihui Feng, Cheuk-Wai Tai, Sung-Fu Hung, Hsin-Jung Tsai, Meng-Cheng Chen, Yang Bai, Dongha Kim, Sungjin Park, Panos Papangelakis, Chengqian Wu, Ali Shayesteh Zeraati, Roham Dorakhan, Licheng Sun, David Sinton, Edward Sargent","doi":"10.1038/s44160-024-00689-0","DOIUrl":null,"url":null,"abstract":"Electrochemical CO2 reduction provides a promising strategy to synthesize C2+ compounds with reduced carbon intensity; however, high overall energy consumption restricts practical implementation. Using acidic media enables high CO2 utilization and low liquid product crossover, but to date has suffered low C2+ product selectivity. Here we hypothesize that adjacent pairs of atomic-copper active sites may favour C–C coupling, thus facilitating C2+ product formation. We construct tandem electrocatalysts with two distinct classes of active sites, the first for CO2 to CO, and the second, a dual-atomic-site catalyst, for CO to C2+. This leads to an ethanol Faradaic efficiency of 46% and a C2+ product Faradaic efficiency of 91% at 150 mA cm−2 in an acidic CO2 reduction reaction. We document a CO2 single-pass utilization of 78% and an energy efficiency of 30% towards C2+ products; an ethanol crossover rate of 5%; and an ethanol product concentration of 4.5%, resulting in an exceptionally low projected energy cost of 249 GJ t−1 for the electrosynthesis of ethanol via the CO2 reduction reaction. Tandem electrocatalysts are developed for acidic CO2 electroreduction. The catalyst contains planar-copper for CO2 reduction to CO, and a dual-copper-active-site layer for CO reduction to C2+ products. An ethanol Faradaic efficiency of 46% and a C2+ Faradaic efficiency of 91% are achieved in acidic electrolyte at 150 mA cm−2.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"4 2","pages":"262-270"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44160-024-00689-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical CO2 reduction provides a promising strategy to synthesize C2+ compounds with reduced carbon intensity; however, high overall energy consumption restricts practical implementation. Using acidic media enables high CO2 utilization and low liquid product crossover, but to date has suffered low C2+ product selectivity. Here we hypothesize that adjacent pairs of atomic-copper active sites may favour C–C coupling, thus facilitating C2+ product formation. We construct tandem electrocatalysts with two distinct classes of active sites, the first for CO2 to CO, and the second, a dual-atomic-site catalyst, for CO to C2+. This leads to an ethanol Faradaic efficiency of 46% and a C2+ product Faradaic efficiency of 91% at 150 mA cm−2 in an acidic CO2 reduction reaction. We document a CO2 single-pass utilization of 78% and an energy efficiency of 30% towards C2+ products; an ethanol crossover rate of 5%; and an ethanol product concentration of 4.5%, resulting in an exceptionally low projected energy cost of 249 GJ t−1 for the electrosynthesis of ethanol via the CO2 reduction reaction. Tandem electrocatalysts are developed for acidic CO2 electroreduction. The catalyst contains planar-copper for CO2 reduction to CO, and a dual-copper-active-site layer for CO reduction to C2+ products. An ethanol Faradaic efficiency of 46% and a C2+ Faradaic efficiency of 91% are achieved in acidic electrolyte at 150 mA cm−2.

Abstract Image

原子水平的Cu活性位点使高能效的CO2电还原到强酸中的多碳产品
电化学CO2还原为合成碳强度降低的C2+化合物提供了一种很有前途的策略;然而,高总体能耗限制了实际实施。使用酸性介质可以提高CO2利用率和低液体产品交叉,但迄今为止,C2+产品的选择性较低。在这里,我们假设相邻的原子-铜活性位点对可能有利于C-C偶联,从而促进C2+产物的形成。我们构建了具有两种不同活性位点的串联电催化剂,第一类是CO2到CO的活性位点,第二类是CO到C2+的双原子位点催化剂。在150ma cm - 2的酸性CO2还原反应中,乙醇的法拉第效率为46%,C2+产物法拉第效率为91%。我们记录了单次二氧化碳利用率为78%,C2+产品的能源效率为30%;乙醇交叉率为5%;乙醇产物浓度为4.5%,因此通过CO2还原反应电合成乙醇的预计能源成本极低,为249 GJ t−1。研制了用于酸性CO2电还原的串联电催化剂。该催化剂含有平面铜,用于将CO2还原为CO,双铜活性位层用于将CO还原为C2+产物。在150ma cm−2的酸性电解液中,乙醇的法拉第效率为46%,C2+法拉第效率为91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信