Mechanochemical nitrogen fixation catalysed by molybdenum complexes

0 CHEMISTRY, MULTIDISCIPLINARY
Shun Suginome, Kurumi Murota, Akira Yamamoto, Hisao Yoshida, Yoshiaki Nishibayashi
{"title":"Mechanochemical nitrogen fixation catalysed by molybdenum complexes","authors":"Shun Suginome, Kurumi Murota, Akira Yamamoto, Hisao Yoshida, Yoshiaki Nishibayashi","doi":"10.1038/s44160-024-00661-y","DOIUrl":null,"url":null,"abstract":"Transition metal-catalysed mechanochemical reactions using ball milling have emerged as important tools to realize unique organic transformations. Mechanochemical reactions have advantages over conventional homogeneous reactions, such as using a small amount of organic solvent, having a broad substrate scope and being generally fast and selective reactions. An increasing number of mechanochemical reactions between solid substrates have been examined, but only a few examples of mechanochemical reactions involving gaseous substrates, such as nitrogen fixation to convert dinitrogen into ammonia, have been reported until now. Here we develop catalytic mechanochemical nitrogen fixation using molybdenum complexes as molecular catalysts. An atmospheric pressure of dinitrogen was reacted with samarium diiodide as a reductant and water or alcohols as proton sources in the presence of the molybdenum catalysts, using ball milling under solvent-free and near-ambient reaction conditions to afford up to 860 equivalents of ammonia based on the catalyst. In addition, we demonstrated that even insoluble cellulose can be applied as the proton source. Further, we revealed that the molybdenum-catalysed mechanochemical nitrogen fixation proceeds via nitrogen–nitrogen bond cleavage at the gas–solid interface and nitrogen–hydrogen bond formation in the solid phase. The use of large amounts of solvents is an obstacle to the practical application of nitrogen fixation using transition metal complexes. Here catalytic ammonia synthesis is achieved by reacting dinitrogen (1 atm) with samarium diiodide and proton sources, including cellulose, in the presence of molybdenum catalysts under solvent-free ball-milling conditions.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"4 2","pages":"243-251"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44160-024-00661-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44160-024-00661-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal-catalysed mechanochemical reactions using ball milling have emerged as important tools to realize unique organic transformations. Mechanochemical reactions have advantages over conventional homogeneous reactions, such as using a small amount of organic solvent, having a broad substrate scope and being generally fast and selective reactions. An increasing number of mechanochemical reactions between solid substrates have been examined, but only a few examples of mechanochemical reactions involving gaseous substrates, such as nitrogen fixation to convert dinitrogen into ammonia, have been reported until now. Here we develop catalytic mechanochemical nitrogen fixation using molybdenum complexes as molecular catalysts. An atmospheric pressure of dinitrogen was reacted with samarium diiodide as a reductant and water or alcohols as proton sources in the presence of the molybdenum catalysts, using ball milling under solvent-free and near-ambient reaction conditions to afford up to 860 equivalents of ammonia based on the catalyst. In addition, we demonstrated that even insoluble cellulose can be applied as the proton source. Further, we revealed that the molybdenum-catalysed mechanochemical nitrogen fixation proceeds via nitrogen–nitrogen bond cleavage at the gas–solid interface and nitrogen–hydrogen bond formation in the solid phase. The use of large amounts of solvents is an obstacle to the practical application of nitrogen fixation using transition metal complexes. Here catalytic ammonia synthesis is achieved by reacting dinitrogen (1 atm) with samarium diiodide and proton sources, including cellulose, in the presence of molybdenum catalysts under solvent-free ball-milling conditions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信