Metal/MXene composites via in situ reduction

0 CHEMISTRY, MULTIDISCIPLINARY
Qingxiao Zhang, Jia-ao Wang, Qinghua Yu, Qizhen Li, Runze Fan, Chong Li, Yiyi Fan, Cong Zhao, Weihua Cheng, Peiyi Ji, Jie Sheng, Chenhao Zhang, Songhai Xie, Graeme Henkelman, Hui Li
{"title":"Metal/MXene composites via in situ reduction","authors":"Qingxiao Zhang, Jia-ao Wang, Qinghua Yu, Qizhen Li, Runze Fan, Chong Li, Yiyi Fan, Cong Zhao, Weihua Cheng, Peiyi Ji, Jie Sheng, Chenhao Zhang, Songhai Xie, Graeme Henkelman, Hui Li","doi":"10.1038/s44160-024-00660-z","DOIUrl":null,"url":null,"abstract":"Metal/two-dimensional substrate composites offer a rich library of materials that can have application in catalysis, sensing, biotechnology and other fields. In situ reduction deposition provides a scalable method for fabricating metal/MXene composites, but the rational control of metal nanostructures growth on MXene remains difficult. Here a strategy for the in situ reduction deposition of various metals (Au, Pd, Ag, Pt, Rh, Ru and Cu) on Ti3C2Tx MXene is demonstrated. This study uncovers the guiding principles of the metal deposition process on MXene nanosheets, including the influence of redox potential, metal coordination and lattice mismatch. A series of metal/MXene composites with fine-tuned structures were constructed based on these guiding principles, such as Pd@Au-Edge/Ti3C2Tx, Pt@Au-Edge/Ti3C2Tx, Au@Ag@Au-Surface/Ti3C2Tx and Ag@Pd@Au-Edge/Ti3C2Tx. In addition, the in situ reduction strategy can be extended to other MXene materials, such as Mo2CTx, V2CTx, Ti3CNTx, Nb4C3Tx and Mo2TiC2Tx, which allows the creation of metal/MXene composites with versatile and customizable nanostructures for a wide range of applications. In situ reduction deposition is a scalable method for fabricating metal/MXene composites, but rational control remains difficult. Now an in situ reduction strategy for synthesizing metal/MXene composites with precise control over metal size, deposition site and nanostructure has been demonstrated.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"4 2","pages":"252-261"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44160-024-00660-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal/two-dimensional substrate composites offer a rich library of materials that can have application in catalysis, sensing, biotechnology and other fields. In situ reduction deposition provides a scalable method for fabricating metal/MXene composites, but the rational control of metal nanostructures growth on MXene remains difficult. Here a strategy for the in situ reduction deposition of various metals (Au, Pd, Ag, Pt, Rh, Ru and Cu) on Ti3C2Tx MXene is demonstrated. This study uncovers the guiding principles of the metal deposition process on MXene nanosheets, including the influence of redox potential, metal coordination and lattice mismatch. A series of metal/MXene composites with fine-tuned structures were constructed based on these guiding principles, such as Pd@Au-Edge/Ti3C2Tx, Pt@Au-Edge/Ti3C2Tx, Au@Ag@Au-Surface/Ti3C2Tx and Ag@Pd@Au-Edge/Ti3C2Tx. In addition, the in situ reduction strategy can be extended to other MXene materials, such as Mo2CTx, V2CTx, Ti3CNTx, Nb4C3Tx and Mo2TiC2Tx, which allows the creation of metal/MXene composites with versatile and customizable nanostructures for a wide range of applications. In situ reduction deposition is a scalable method for fabricating metal/MXene composites, but rational control remains difficult. Now an in situ reduction strategy for synthesizing metal/MXene composites with precise control over metal size, deposition site and nanostructure has been demonstrated.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信