Qingxiao Zhang, Jia-ao Wang, Qinghua Yu, Qizhen Li, Runze Fan, Chong Li, Yiyi Fan, Cong Zhao, Weihua Cheng, Peiyi Ji, Jie Sheng, Chenhao Zhang, Songhai Xie, Graeme Henkelman, Hui Li
{"title":"Metal/MXene composites via in situ reduction","authors":"Qingxiao Zhang, Jia-ao Wang, Qinghua Yu, Qizhen Li, Runze Fan, Chong Li, Yiyi Fan, Cong Zhao, Weihua Cheng, Peiyi Ji, Jie Sheng, Chenhao Zhang, Songhai Xie, Graeme Henkelman, Hui Li","doi":"10.1038/s44160-024-00660-z","DOIUrl":null,"url":null,"abstract":"Metal/two-dimensional substrate composites offer a rich library of materials that can have application in catalysis, sensing, biotechnology and other fields. In situ reduction deposition provides a scalable method for fabricating metal/MXene composites, but the rational control of metal nanostructures growth on MXene remains difficult. Here a strategy for the in situ reduction deposition of various metals (Au, Pd, Ag, Pt, Rh, Ru and Cu) on Ti3C2Tx MXene is demonstrated. This study uncovers the guiding principles of the metal deposition process on MXene nanosheets, including the influence of redox potential, metal coordination and lattice mismatch. A series of metal/MXene composites with fine-tuned structures were constructed based on these guiding principles, such as Pd@Au-Edge/Ti3C2Tx, Pt@Au-Edge/Ti3C2Tx, Au@Ag@Au-Surface/Ti3C2Tx and Ag@Pd@Au-Edge/Ti3C2Tx. In addition, the in situ reduction strategy can be extended to other MXene materials, such as Mo2CTx, V2CTx, Ti3CNTx, Nb4C3Tx and Mo2TiC2Tx, which allows the creation of metal/MXene composites with versatile and customizable nanostructures for a wide range of applications. In situ reduction deposition is a scalable method for fabricating metal/MXene composites, but rational control remains difficult. Now an in situ reduction strategy for synthesizing metal/MXene composites with precise control over metal size, deposition site and nanostructure has been demonstrated.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"4 2","pages":"252-261"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44160-024-00660-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal/two-dimensional substrate composites offer a rich library of materials that can have application in catalysis, sensing, biotechnology and other fields. In situ reduction deposition provides a scalable method for fabricating metal/MXene composites, but the rational control of metal nanostructures growth on MXene remains difficult. Here a strategy for the in situ reduction deposition of various metals (Au, Pd, Ag, Pt, Rh, Ru and Cu) on Ti3C2Tx MXene is demonstrated. This study uncovers the guiding principles of the metal deposition process on MXene nanosheets, including the influence of redox potential, metal coordination and lattice mismatch. A series of metal/MXene composites with fine-tuned structures were constructed based on these guiding principles, such as Pd@Au-Edge/Ti3C2Tx, Pt@Au-Edge/Ti3C2Tx, Au@Ag@Au-Surface/Ti3C2Tx and Ag@Pd@Au-Edge/Ti3C2Tx. In addition, the in situ reduction strategy can be extended to other MXene materials, such as Mo2CTx, V2CTx, Ti3CNTx, Nb4C3Tx and Mo2TiC2Tx, which allows the creation of metal/MXene composites with versatile and customizable nanostructures for a wide range of applications. In situ reduction deposition is a scalable method for fabricating metal/MXene composites, but rational control remains difficult. Now an in situ reduction strategy for synthesizing metal/MXene composites with precise control over metal size, deposition site and nanostructure has been demonstrated.