Insights into Molecular Interactions in Binary and Ternary Mixtures of Propan-1-ol, Pyridine, and Benzene: An Experimental and Modeling Approach

IF 2 3区 工程技术 Q3 CHEMISTRY, MULTIDISCIPLINARY
Arbër Musliu, Kaltrinë Krasniqi, Tahir Arbneshi, Ariel Hernández, Naim Syla and Fisnik Aliaj*, 
{"title":"Insights into Molecular Interactions in Binary and Ternary Mixtures of Propan-1-ol, Pyridine, and Benzene: An Experimental and Modeling Approach","authors":"Arbër Musliu,&nbsp;Kaltrinë Krasniqi,&nbsp;Tahir Arbneshi,&nbsp;Ariel Hernández,&nbsp;Naim Syla and Fisnik Aliaj*,&nbsp;","doi":"10.1021/acs.jced.4c0067810.1021/acs.jced.4c00678","DOIUrl":null,"url":null,"abstract":"<p >Experimental densities and sound speeds at temperatures (293.15, 298.15, 303.15, 313.15, and 323.15 K) and refractive indices at 298.15 K under ambient pressure are reported for the first time for the ternary system {propan-1-ol + pyridine + benzene}, covering the full composition range. Corresponding binary subsystems were also investigated. The excess molar volume, excess isentropic compressibility, and excess refractive index, derived from experimental data, were correlated by using the Redlich−Kister and Cibulka equations for binary and ternary systems, respectively. The composition and temperature dependence of these properties provided insights into molecular interactions and structural effects within the mixtures. The perturbed chain statistical associating fluid theory equation of state modeled the densities of binary and ternary mixtures using a predictive approach. Schaaff’s collision factor theory and Nomoto’s relation modeled sound speeds, while Lorentz−Lorenz, Gladstone−Dale, Laplace, and Eykman mixing rules predicted refractive indices. The Jouyban−Acree model represents the composition and temperature dependence of the thermophysical properties. Ternary excess properties were compared with values predicted by binary contribution symmetric (Kohler and Muggianu) and asymmetric (Hillert and Toop) geometric models. Model accuracy was evaluated using statistical indicators, highlighting the suitability of theoretical and empirical approaches for describing the thermophysical properties in these mixtures.</p>","PeriodicalId":42,"journal":{"name":"Journal of Chemical & Engineering Data","volume":"70 2","pages":"934–952 934–952"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical & Engineering Data","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jced.4c00678","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Experimental densities and sound speeds at temperatures (293.15, 298.15, 303.15, 313.15, and 323.15 K) and refractive indices at 298.15 K under ambient pressure are reported for the first time for the ternary system {propan-1-ol + pyridine + benzene}, covering the full composition range. Corresponding binary subsystems were also investigated. The excess molar volume, excess isentropic compressibility, and excess refractive index, derived from experimental data, were correlated by using the Redlich−Kister and Cibulka equations for binary and ternary systems, respectively. The composition and temperature dependence of these properties provided insights into molecular interactions and structural effects within the mixtures. The perturbed chain statistical associating fluid theory equation of state modeled the densities of binary and ternary mixtures using a predictive approach. Schaaff’s collision factor theory and Nomoto’s relation modeled sound speeds, while Lorentz−Lorenz, Gladstone−Dale, Laplace, and Eykman mixing rules predicted refractive indices. The Jouyban−Acree model represents the composition and temperature dependence of the thermophysical properties. Ternary excess properties were compared with values predicted by binary contribution symmetric (Kohler and Muggianu) and asymmetric (Hillert and Toop) geometric models. Model accuracy was evaluated using statistical indicators, highlighting the suitability of theoretical and empirical approaches for describing the thermophysical properties in these mixtures.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical & Engineering Data
Journal of Chemical & Engineering Data 工程技术-工程:化工
CiteScore
5.20
自引率
19.20%
发文量
324
审稿时长
2.2 months
期刊介绍: The Journal of Chemical & Engineering Data is a monthly journal devoted to the publication of data obtained from both experiment and computation, which are viewed as complementary. It is the only American Chemical Society journal primarily concerned with articles containing data on the phase behavior and the physical, thermodynamic, and transport properties of well-defined materials, including complex mixtures of known compositions. While environmental and biological samples are of interest, their compositions must be known and reproducible. As a result, adsorption on natural product materials does not generally fit within the scope of Journal of Chemical & Engineering Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信