Local Time Variations of Quiet Time Meridional Winds During Solar Minimum Solstices Based on ICON Observations and Numerical Simulations

IF 2.9 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Tingting Yu, Xuguang Cai, Zhipeng Ren, Huixin Liu, Liuhui Qiu, Han Ma, Shaoyang Li, Kun Wu
{"title":"Local Time Variations of Quiet Time Meridional Winds During Solar Minimum Solstices Based on ICON Observations and Numerical Simulations","authors":"Tingting Yu,&nbsp;Xuguang Cai,&nbsp;Zhipeng Ren,&nbsp;Huixin Liu,&nbsp;Liuhui Qiu,&nbsp;Han Ma,&nbsp;Shaoyang Li,&nbsp;Kun Wu","doi":"10.1029/2024EA003880","DOIUrl":null,"url":null,"abstract":"<p>ICON observations were used to investigate local time (LT) and latitudinal variations of thermospheric meridional winds in the middle-high thermosphere (160–300 km) during quiet times in 2020 June and December. At middle-low latitudes (10°S–40°N), meridional winds were predominantly equatorward in the summer hemisphere while mostly poleward in the winter hemisphere. The meridional winds showed that the diurnal variation was dominant between ∼20°N and ∼40°N, but the semi-diurnal variation played a leading role at lower latitudes (below ∼20°N) during solstice months. Thermosphere-Ionosphere Electrodynamics General Circulation Model reproduced the ICON observed meridional wind variations qualitatively. A model diagnostic analysis shows that the pressure gradient force dominated the semi-diurnal variation of the winds, while the Coriolis force played a leading role in the diurnal variation in June. In December, LT variations of meridional winds were primarily driven by pressure gradient and ion drag forces. During both months, the vertical viscosity was important, tending to balance the effects of pressure gradients. Additionally, semi-diurnal variations of low-latitude meridional winds in June were more affected by upward propagating tides than those in December.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003880","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003880","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

ICON observations were used to investigate local time (LT) and latitudinal variations of thermospheric meridional winds in the middle-high thermosphere (160–300 km) during quiet times in 2020 June and December. At middle-low latitudes (10°S–40°N), meridional winds were predominantly equatorward in the summer hemisphere while mostly poleward in the winter hemisphere. The meridional winds showed that the diurnal variation was dominant between ∼20°N and ∼40°N, but the semi-diurnal variation played a leading role at lower latitudes (below ∼20°N) during solstice months. Thermosphere-Ionosphere Electrodynamics General Circulation Model reproduced the ICON observed meridional wind variations qualitatively. A model diagnostic analysis shows that the pressure gradient force dominated the semi-diurnal variation of the winds, while the Coriolis force played a leading role in the diurnal variation in June. In December, LT variations of meridional winds were primarily driven by pressure gradient and ion drag forces. During both months, the vertical viscosity was important, tending to balance the effects of pressure gradients. Additionally, semi-diurnal variations of low-latitude meridional winds in June were more affected by upward propagating tides than those in December.

Abstract Image

基于 ICON 观测和数值模拟的太阳小至期间静止时间经向风的局部时间变化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth and Space Science
Earth and Space Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
5.50
自引率
3.20%
发文量
285
审稿时长
19 weeks
期刊介绍: Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信