The Influence of Cuprorivaite Nanoparticles on the Physicomechanical and Biological Performance of 3D-Printed Scaffold Based on Carboxymethyl Chitosan Combined With Zein for Bone Tissue Engineering

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biopolymers Pub Date : 2025-02-13 DOI:10.1002/bip.23652
Mojtaba Ansari, Hossein Eslami, Abolfazl Karimi, Akram Dehestani, Mohammad Reza Razmaein, Fatemeh Ghanbari
{"title":"The Influence of Cuprorivaite Nanoparticles on the Physicomechanical and Biological Performance of 3D-Printed Scaffold Based on Carboxymethyl Chitosan Combined With Zein for Bone Tissue Engineering","authors":"Mojtaba Ansari,&nbsp;Hossein Eslami,&nbsp;Abolfazl Karimi,&nbsp;Akram Dehestani,&nbsp;Mohammad Reza Razmaein,&nbsp;Fatemeh Ghanbari","doi":"10.1002/bip.23652","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study demonstrates a new degradable 3D-printed carboxymethyl chitosan (CMC)/zein bone scaffold loaded with different content of cuprorivaite (Cup) nanoparticles which labeled as CMCS/Z/Cup. Only a few studies have utilized these components to fabricate a three-component porous osteogenic scaffold. The aim of this study was to comprehensively assess the mechanical and biocompatibility of the nanocomposite which synthesized by 3D printing method. For this purpose, the Cup powder was initially synthesized through sol–gel process and its confirmation was proved using techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Then, three CMC/Z scaffolds were made with different Cup contents: group A (0 wt.% Cup), group B (2.5 wt.% Cup) and group C (5 wt.% Cup). The scaffolds were well-ordered microporous with a high porosity and pore connectivity, as observed by morphological analysis by SEM. Additionally, the pore size of group B was more homogeneous than that of groups A and C. There were no significance differences in physicochemical characterization among the three groups. Mechanical properties analysis showed that values of compression modulus are significantly increased with addition of 2.5% Cup nanoparticles into CMCS/zein matrix, from 1.2 to 9.6 MPa. The incorporation of Cup nanoparticles into CMCS along with zein can provide a suitable substrate for the growth of osteoblast cells after implantation, as indicated by the results of in vitro degradation. The scaffolds were cultured in vitro with MG-63 cells, showing that cell viability increased with the Cup content, 95%, 105%, and 110% for the pure polymeric scaffold, and scaffolds reinforced with 2.5% and 5% Cup, respectively. As a result, the scaffolds designed in this study possess the ability to be used in bone tissue engineering due to having characteristics similar to natural bone.</p>\n </div>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"116 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.23652","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study demonstrates a new degradable 3D-printed carboxymethyl chitosan (CMC)/zein bone scaffold loaded with different content of cuprorivaite (Cup) nanoparticles which labeled as CMCS/Z/Cup. Only a few studies have utilized these components to fabricate a three-component porous osteogenic scaffold. The aim of this study was to comprehensively assess the mechanical and biocompatibility of the nanocomposite which synthesized by 3D printing method. For this purpose, the Cup powder was initially synthesized through sol–gel process and its confirmation was proved using techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Then, three CMC/Z scaffolds were made with different Cup contents: group A (0 wt.% Cup), group B (2.5 wt.% Cup) and group C (5 wt.% Cup). The scaffolds were well-ordered microporous with a high porosity and pore connectivity, as observed by morphological analysis by SEM. Additionally, the pore size of group B was more homogeneous than that of groups A and C. There were no significance differences in physicochemical characterization among the three groups. Mechanical properties analysis showed that values of compression modulus are significantly increased with addition of 2.5% Cup nanoparticles into CMCS/zein matrix, from 1.2 to 9.6 MPa. The incorporation of Cup nanoparticles into CMCS along with zein can provide a suitable substrate for the growth of osteoblast cells after implantation, as indicated by the results of in vitro degradation. The scaffolds were cultured in vitro with MG-63 cells, showing that cell viability increased with the Cup content, 95%, 105%, and 110% for the pure polymeric scaffold, and scaffolds reinforced with 2.5% and 5% Cup, respectively. As a result, the scaffolds designed in this study possess the ability to be used in bone tissue engineering due to having characteristics similar to natural bone.

Abstract Image

纳米铜钛对羧甲基壳聚糖-玉米蛋白复合骨组织工程3d打印支架物理力学和生物学性能的影响
本研究展示了一种新型可降解的3d打印羧甲基壳聚糖(CMC)/玉米蛋白骨支架,该支架负载不同含量的铜酸钙(Cup)纳米颗粒,标记为CMCS/Z/Cup。只有少数研究利用这些成分来制造三组分多孔成骨支架。本研究的目的是综合评价通过3D打印方法合成的纳米复合材料的力学和生物相容性。为此,采用溶胶-凝胶法初步合成了Cup粉末,并利用x射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)等技术对其进行了验证。然后制备三种不同Cup含量的CMC/Z支架:A组(0 wt;% Cup), B组(2.5 wt。% Cup)和C组(5 wt。%杯)。扫描电镜形态学分析表明,支架结构为有序的微孔结构,具有较高的孔隙率和孔隙连通性。此外,B组的孔径比A和c组更均匀,三组之间的理化性质无显著差异。力学性能分析表明,加入2.5% Cup纳米颗粒后,CMCS/玉米蛋白基质的压缩模量从1.2 MPa显著提高到9.6 MPa。体外降解结果表明,将Cup纳米颗粒与玉米蛋白一起掺入CMCS,可为植入后成骨细胞的生长提供合适的底物。用MG-63细胞体外培养支架,发现纯聚合物支架的细胞活力随Cup含量的增加而增加,分别为95%、105%和110%,2.5%和5% Cup增强支架。因此,本研究设计的支架具有与天然骨相似的特性,具有在骨组织工程中应用的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biopolymers
Biopolymers 生物-生化与分子生物学
CiteScore
5.30
自引率
0.00%
发文量
48
审稿时长
3 months
期刊介绍: Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信