Ice Thickness-Induced Variations in Effective Pressure and Basal Conditions Influence Seasonal and Multi-Annual Ice Velocity at Sermeq Kujalleq (Jakobshavn Isbræ)

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Xi Lu, Andrew Sole, Stephen J. Livingstone, Gong Cheng, Liming Jiang, Tom Chudley, Brice Noël, Daan Li
{"title":"Ice Thickness-Induced Variations in Effective Pressure and Basal Conditions Influence Seasonal and Multi-Annual Ice Velocity at Sermeq Kujalleq (Jakobshavn Isbræ)","authors":"Xi Lu,&nbsp;Andrew Sole,&nbsp;Stephen J. Livingstone,&nbsp;Gong Cheng,&nbsp;Liming Jiang,&nbsp;Tom Chudley,&nbsp;Brice Noël,&nbsp;Daan Li","doi":"10.1029/2024GL111092","DOIUrl":null,"url":null,"abstract":"<p>Acceleration of Sermeq Kujalleq has been linked to the retreat of its calving front. However, models consistently underestimate its ice-flow variability, indicating that important physical processes might be ignored, which introduces uncertainties in projecting its future mass loss and sea-level rise contribution. Using the Ice-sheet and Sea-level System Model, we simulate Sermeq Kujalleq from 2016 to 2022 constrained by sub-monthly ice front positions. Changes in front position explain &gt;76% of the velocity variations but with a spatially and seasonally varying misfit between modeled and observed velocities up to 30 km upstream. This misfit significantly correlates with variations in height above flotation within 10 km of the terminus. Incorporating these variations into the model by scaling the basal shear stress reduces the average misfit by over 90%. This indicates that seasonal variations in ice thickness-induced effective pressure and basal conditions play a crucial role in controlling intra-annual and longer-term ice-flow variations.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 4","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111092","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111092","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Acceleration of Sermeq Kujalleq has been linked to the retreat of its calving front. However, models consistently underestimate its ice-flow variability, indicating that important physical processes might be ignored, which introduces uncertainties in projecting its future mass loss and sea-level rise contribution. Using the Ice-sheet and Sea-level System Model, we simulate Sermeq Kujalleq from 2016 to 2022 constrained by sub-monthly ice front positions. Changes in front position explain >76% of the velocity variations but with a spatially and seasonally varying misfit between modeled and observed velocities up to 30 km upstream. This misfit significantly correlates with variations in height above flotation within 10 km of the terminus. Incorporating these variations into the model by scaling the basal shear stress reduces the average misfit by over 90%. This indicates that seasonal variations in ice thickness-induced effective pressure and basal conditions play a crucial role in controlling intra-annual and longer-term ice-flow variations.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信