Characterizing Compound Inland Flooding Mechanisms and Risks in North America Under Climate Change

IF 7.3 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Earths Future Pub Date : 2025-02-12 DOI:10.1029/2024EF005353
Mohammad Fereshtehpour, Mohammad Reza Najafi, Alex J. Cannon
{"title":"Characterizing Compound Inland Flooding Mechanisms and Risks in North America Under Climate Change","authors":"Mohammad Fereshtehpour,&nbsp;Mohammad Reza Najafi,&nbsp;Alex J. Cannon","doi":"10.1029/2024EF005353","DOIUrl":null,"url":null,"abstract":"<p>Compound inland flooding (CIF) arises from the concurrent interaction of multiple hydrometeorological drivers. In this study, we characterize key CIF events across North America, including two preconditioned events, rain-on-snow (ROS) and saturation excess flooding (SEF) for historical baseline conditions and global warming levels of 1.5, 2, and 4°C relative to the preindustrial level. Utilizing the high emission climate scenario (RCP8.5) from CanRCM4-LE with 50 members, the frequency and seasonality of compound events, along with the probability of these events leading to heavy runoff, and the relative role of external forcing and internal climate variability are assessed. We convert the identified hazards into risk levels by integrating them with exposure and vulnerability components. The results suggest that as global temperatures increase, the overall role of ROS events in causing significant runoff is projected to decrease compared to individual heavy rainfall. Concurrently, the impact of SEF occurrences is projected to become more pronounced. The signal-to-noise ratio highlights a high-confidence change signal for CIF events; however, uncertainty related to internal climate variability in future projections of joint probability with heavy runoff is more pronounced. These results underscore the need to consider compound mechanisms, dynamics, and risks associated with CIFs within systematic approaches to flood risk management.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"13 2","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF005353","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EF005353","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Compound inland flooding (CIF) arises from the concurrent interaction of multiple hydrometeorological drivers. In this study, we characterize key CIF events across North America, including two preconditioned events, rain-on-snow (ROS) and saturation excess flooding (SEF) for historical baseline conditions and global warming levels of 1.5, 2, and 4°C relative to the preindustrial level. Utilizing the high emission climate scenario (RCP8.5) from CanRCM4-LE with 50 members, the frequency and seasonality of compound events, along with the probability of these events leading to heavy runoff, and the relative role of external forcing and internal climate variability are assessed. We convert the identified hazards into risk levels by integrating them with exposure and vulnerability components. The results suggest that as global temperatures increase, the overall role of ROS events in causing significant runoff is projected to decrease compared to individual heavy rainfall. Concurrently, the impact of SEF occurrences is projected to become more pronounced. The signal-to-noise ratio highlights a high-confidence change signal for CIF events; however, uncertainty related to internal climate variability in future projections of joint probability with heavy runoff is more pronounced. These results underscore the need to consider compound mechanisms, dynamics, and risks associated with CIFs within systematic approaches to flood risk management.

Abstract Image

气候变化下北美内陆洪水复合机制及其风险特征
复合内陆洪水是多种水文气象因素共同作用的结果。在本研究中,我们描述了北美主要的CIF事件,包括两个预置事件,即历史基线条件下的雨雪(ROS)和饱和过度洪水(SEF),以及相对于工业化前水平的全球变暖水平分别为1.5、2和4°C。利用CanRCM4-LE 50个成员的高排放气候情景(RCP8.5),评估了复合事件的频率和季节性,以及这些事件导致大径流的概率,以及外部强迫和内部气候变率的相对作用。我们通过将已识别的危险与暴露和脆弱性组成部分相结合,将其转换为风险级别。结果表明,随着全球气温的升高,与个别强降雨相比,ROS事件在造成大量径流中的总体作用预计会减弱。同时,SEF发生的影响预计将变得更加明显。信噪比突出了CIF事件的高置信度变化信号;然而,与内部气候变率有关的不确定性在与大径流联合概率的未来预测中更为明显。这些结果强调了在系统的洪水风险管理方法中考虑与CIFs相关的复合机制、动态和风险的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earths Future
Earths Future ENVIRONMENTAL SCIENCESGEOSCIENCES, MULTIDI-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
11.00
自引率
7.30%
发文量
260
审稿时长
16 weeks
期刊介绍: Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信