Extensive Oxygen Consumption in the Intertidal Infiltration Zone of Beach Aquifers—The Impact of Seasonal Input, Filtration Efficiency, and Morphodynamics
F. Auer, S. Ahmerkamp, J. Cueto, C. Winter, M. Holtappels
{"title":"Extensive Oxygen Consumption in the Intertidal Infiltration Zone of Beach Aquifers—The Impact of Seasonal Input, Filtration Efficiency, and Morphodynamics","authors":"F. Auer, S. Ahmerkamp, J. Cueto, C. Winter, M. Holtappels","doi":"10.1029/2024JG008291","DOIUrl":null,"url":null,"abstract":"<p>Seawater infiltration into the permeable sands of beach aquifers creates a high input of biogeochemical reactants driven by tides and waves. The upper sand layer acts as a filter, retaining particulate organic matter (POM), which is degraded by bacteria under predominantly oxic conditions. The seasonal variation of seawater POM and oxygen (O<sub>2</sub>) entering the infiltration zone, combined with the POM filtration efficiency of the highly morphodynamic upper layer, determines the organic matter turnover and subsequent redox gradients along porewater flowpaths. We investigated these effects by quantifying the seasonal O<sub>2</sub> consumption rates directly from the incubations of sediments taken along a transect in the seawater infiltration zone at Spiekeroog Beach, Germany. We carried out a two-monthly year-long sampling campaign with high spatial resolution measurements down to 1 m depth. In summer, O<sub>2</sub> consumption rates of up to 106 μM hr<sup>−1</sup> were found in the first decimeters with a significant decline over depth, indicating efficient retention of reactive POM in the surface layer. Seasonal variation in organic carbon of the sand's suspendable particulates indicates rapid turnover and little storage. In winter, rates decreased significantly to below 11 μM hr<sup>−1</sup>. Integrated over the investigated oxic layer, the estimated carbon mineralization varies between 15 (winter) and 143 (summer) mmol C m<sup>−2</sup> d<sup>−1</sup> with a yearly average of 73 mmol C m<sup>−2</sup> d<sup>−1</sup>. The yearly CO<sub>2</sub> production of 35 kg per meter shoreline characterizes the beach as a high-throughout system with rapid OM remineralization in the retention layer, especially in summer, but with little OM storage.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008291","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008291","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Seawater infiltration into the permeable sands of beach aquifers creates a high input of biogeochemical reactants driven by tides and waves. The upper sand layer acts as a filter, retaining particulate organic matter (POM), which is degraded by bacteria under predominantly oxic conditions. The seasonal variation of seawater POM and oxygen (O2) entering the infiltration zone, combined with the POM filtration efficiency of the highly morphodynamic upper layer, determines the organic matter turnover and subsequent redox gradients along porewater flowpaths. We investigated these effects by quantifying the seasonal O2 consumption rates directly from the incubations of sediments taken along a transect in the seawater infiltration zone at Spiekeroog Beach, Germany. We carried out a two-monthly year-long sampling campaign with high spatial resolution measurements down to 1 m depth. In summer, O2 consumption rates of up to 106 μM hr−1 were found in the first decimeters with a significant decline over depth, indicating efficient retention of reactive POM in the surface layer. Seasonal variation in organic carbon of the sand's suspendable particulates indicates rapid turnover and little storage. In winter, rates decreased significantly to below 11 μM hr−1. Integrated over the investigated oxic layer, the estimated carbon mineralization varies between 15 (winter) and 143 (summer) mmol C m−2 d−1 with a yearly average of 73 mmol C m−2 d−1. The yearly CO2 production of 35 kg per meter shoreline characterizes the beach as a high-throughout system with rapid OM remineralization in the retention layer, especially in summer, but with little OM storage.
期刊介绍:
JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology