Energy Management Systems (EMS) for a Decentralized Grid: A Review and Analysis of the Generation and Control Methods Impact on EMS Type and Topology

IF 2.6 4区 工程技术 Q3 ENERGY & FUELS
Alexander Kudzin, Satoshi Takayama, Atsushi Ishigame
{"title":"Energy Management Systems (EMS) for a Decentralized Grid: A Review and Analysis of the Generation and Control Methods Impact on EMS Type and Topology","authors":"Alexander Kudzin,&nbsp;Satoshi Takayama,&nbsp;Atsushi Ishigame","doi":"10.1049/rpg2.70008","DOIUrl":null,"url":null,"abstract":"<p>Grid decarbonization is transitioning the generation method's (GM) topology towards a distributed energy resource (DER)-centric decentralized topology. However, the control method (CM) and energy management system (EMS) are yet to decentralize, resulting in topological mismatch-related issues that pose significant operational challenges. Due to the advantages of topological synergy, CM research is moving towards decentralized topologies. However, the EMS lacks a clear development path and defined target parameters. This study investigates the interdependencies between GM, CM, and EMS topologies, determining their relationship to forecast the future trajectory of EMS research and to determine robust evaluation parameters for EMS proposals. Topological analysis revealed a strong influence of one sector on another, placing significant pressure to decentralize the EMS. Utilizing these findings, a detailed evaluation of the proposed cloud-edge, cluster, and blockchain-based EMS proposals against the established parameters revealed that blockchain-based architectures best aligned with the incoming decentralized GM and CM's limitations, requirements, and advantages, offering superior security, resilience, adaptability, and scalability. Furthermore, blockchain technology has largely overcome the regulatory barriers and technical challenges, such as communication overheads, making blockchain-based EMS the most effective and efficient choice for a next-gen EMS.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.70008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.70008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Grid decarbonization is transitioning the generation method's (GM) topology towards a distributed energy resource (DER)-centric decentralized topology. However, the control method (CM) and energy management system (EMS) are yet to decentralize, resulting in topological mismatch-related issues that pose significant operational challenges. Due to the advantages of topological synergy, CM research is moving towards decentralized topologies. However, the EMS lacks a clear development path and defined target parameters. This study investigates the interdependencies between GM, CM, and EMS topologies, determining their relationship to forecast the future trajectory of EMS research and to determine robust evaluation parameters for EMS proposals. Topological analysis revealed a strong influence of one sector on another, placing significant pressure to decentralize the EMS. Utilizing these findings, a detailed evaluation of the proposed cloud-edge, cluster, and blockchain-based EMS proposals against the established parameters revealed that blockchain-based architectures best aligned with the incoming decentralized GM and CM's limitations, requirements, and advantages, offering superior security, resilience, adaptability, and scalability. Furthermore, blockchain technology has largely overcome the regulatory barriers and technical challenges, such as communication overheads, making blockchain-based EMS the most effective and efficient choice for a next-gen EMS.

Abstract Image

分散式电网能源管理系统(EMS):产生与控制方式对EMS类型与拓扑结构影响的回顾与分析
电网脱碳是将发电方法(GM)拓扑向以分布式能源(DER)为中心的分散拓扑过渡。然而,控制方法(CM)和能源管理系统(EMS)尚未分散,导致拓扑不匹配相关问题,给运营带来重大挑战。由于拓扑协同的优势,协同管理研究正朝着分散拓扑的方向发展。然而,环境管理体系缺乏明确的发展路径和明确的目标参数。本研究探讨了GM、CM和EMS拓扑之间的相互依赖关系,确定了它们之间的关系,以预测EMS研究的未来轨迹,并为EMS提案确定可靠的评估参数。拓扑分析揭示了一个部门对另一个部门的强大影响,对EMS的分散施加了巨大的压力。利用这些发现,根据既定参数对拟议的云边缘、集群和基于区块链的EMS提案进行了详细评估,结果表明,基于区块链的架构最符合即将到来的去中心化GM和CM的限制、要求和优势,提供了卓越的安全性、弹性、适应性和可扩展性。此外,区块链技术在很大程度上克服了监管障碍和技术挑战,例如通信开销,使基于区块链的EMS成为下一代EMS最有效和最高效的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Renewable Power Generation
IET Renewable Power Generation 工程技术-工程:电子与电气
CiteScore
6.80
自引率
11.50%
发文量
268
审稿时长
6.6 months
期刊介绍: IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal. Specific technology areas covered by the journal include: Wind power technology and systems Photovoltaics Solar thermal power generation Geothermal energy Fuel cells Wave power Marine current energy Biomass conversion and power generation What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small. The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged. The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced. Current Special Issue. Call for papers: Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信