Antiviral metabolites from Passiflora edulis: An in vitro, phytochemical, and computational studies

IF 4.3 3区 医学 Q2 CHEMISTRY, MEDICINAL
Abeer H. Elmaidomy, Michelle Teutsch, Jochen Bodem, Ruqaiah I. Bedaiwi, Mubarak A. Alzubaidi, Hisham A. Abou-Zied, Usama Ramadan Abdelmohsen
{"title":"Antiviral metabolites from Passiflora edulis: An in vitro, phytochemical, and computational studies","authors":"Abeer H. Elmaidomy,&nbsp;Michelle Teutsch,&nbsp;Jochen Bodem,&nbsp;Ruqaiah I. Bedaiwi,&nbsp;Mubarak A. Alzubaidi,&nbsp;Hisham A. Abou-Zied,&nbsp;Usama Ramadan Abdelmohsen","doi":"10.1002/ardp.202400853","DOIUrl":null,"url":null,"abstract":"<p>Yellow fever (YF) is a mosquito-borne virus with high mortality rates, affecting regions in South America and Africa. Despite the effectiveness of YF vaccines, increased global demand and reports of rare, severe side effects have spurred the search for safer therapeutic alternatives. Current treatments lack specific antiviral drugs approved for YF, underscoring the need for new, effective therapies. This study investigated the potential of <i>Passiflora edulis f. edulis</i> leaf and stem extracts as antiviral agents against the yellow fever virus (YFV). In vitro tests showed that the extracts significantly reduced YFV viral loads by twofold in Huh-7 cells and 1.5-fold in Vero-h-Slam cells at a concentration of 50 µg/mL, with a smaller reduction at 25 µg/mL and no cytotoxic effects on either cell line. Phytochemical analysis identified a new C-deoxyhexosyl flavone, luteolin-8-(1-<i>C</i>-β-boivinopyranosyl)-4′1-<i>O</i>-β-<span>d</span>-glucopyranoside, along with several known compounds. Protein–protein interaction (PPI) network analysis using the STRING database and Cytoscape software revealed key hub genes, including IFNA1, IL7R, CD19, IL2RA, and IFNG, crucial in antiviral defense. Molecular docking studies further evaluated how these compounds interact with the YFV NS2B-NS3 protease, essential for viral replication. Molecular dynamics (MD) simulations confirmed the stability of these interactions over a 120-nanosecond period, supporting the compounds’ antiviral potential. This study demonstrates the promise of <i>Passiflora edulis</i> metabolites as a foundation for developing novel YFV therapies by combining computational and experimental insights.</p>","PeriodicalId":128,"journal":{"name":"Archiv der Pharmazie","volume":"358 2","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ardp.202400853","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Yellow fever (YF) is a mosquito-borne virus with high mortality rates, affecting regions in South America and Africa. Despite the effectiveness of YF vaccines, increased global demand and reports of rare, severe side effects have spurred the search for safer therapeutic alternatives. Current treatments lack specific antiviral drugs approved for YF, underscoring the need for new, effective therapies. This study investigated the potential of Passiflora edulis f. edulis leaf and stem extracts as antiviral agents against the yellow fever virus (YFV). In vitro tests showed that the extracts significantly reduced YFV viral loads by twofold in Huh-7 cells and 1.5-fold in Vero-h-Slam cells at a concentration of 50 µg/mL, with a smaller reduction at 25 µg/mL and no cytotoxic effects on either cell line. Phytochemical analysis identified a new C-deoxyhexosyl flavone, luteolin-8-(1-C-β-boivinopyranosyl)-4′1-O-β-d-glucopyranoside, along with several known compounds. Protein–protein interaction (PPI) network analysis using the STRING database and Cytoscape software revealed key hub genes, including IFNA1, IL7R, CD19, IL2RA, and IFNG, crucial in antiviral defense. Molecular docking studies further evaluated how these compounds interact with the YFV NS2B-NS3 protease, essential for viral replication. Molecular dynamics (MD) simulations confirmed the stability of these interactions over a 120-nanosecond period, supporting the compounds’ antiviral potential. This study demonstrates the promise of Passiflora edulis metabolites as a foundation for developing novel YFV therapies by combining computational and experimental insights.

西番莲中的抗病毒代谢物:体外、植物化学和计算研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Pharmazie
Archiv der Pharmazie 医学-化学综合
CiteScore
7.90
自引率
5.90%
发文量
176
审稿时长
3.0 months
期刊介绍: Archiv der Pharmazie - Chemistry in Life Sciences is an international journal devoted to research and development in all fields of pharmaceutical and medicinal chemistry. Emphasis is put on papers combining synthetic organic chemistry, structural biology, molecular modelling, bioorganic chemistry, natural products chemistry, biochemistry or analytical methods with pharmaceutical or medicinal aspects such as biological activity. The focus of this journal is put on original research papers, but other scientifically valuable contributions (e.g. reviews, minireviews, highlights, symposia contributions, discussions, and essays) are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信