Meditation Linked to Enhanced MRI Signal Intensity in the Pineal Gland and Reduced Predicted Brain Age

IF 8.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Emanuele R. G. Plini, Michael C. Melnychuk, Paul M. Dockree
{"title":"Meditation Linked to Enhanced MRI Signal Intensity in the Pineal Gland and Reduced Predicted Brain Age","authors":"Emanuele R. G. Plini,&nbsp;Michael C. Melnychuk,&nbsp;Paul M. Dockree","doi":"10.1111/jpi.70033","DOIUrl":null,"url":null,"abstract":"<p>Growing evidence demonstrates that meditation practice supports cognitive functions, including attention and interoceptive processing, and is associated with structural changes across cortical networks, including prefrontal regions and the insula. However, the extent of subcortical morphometric changes linked to meditation practice is less appreciated. A noteworthy candidate is the pineal gland, a key producer of melatonin, which regulates circadian rhythms that augment sleep-wake patterns and may also provide neuroprotective benefits to offset cognitive decline. Increased melatonin levels, as well as increased fMRI BOLD signal in the pineal gland, have been observed in meditators versus controls. However, it is not known if long-term meditators exhibit structural changes in the pineal gland linked to the lifetime duration of practice. In the current study, we performed voxel-based morphometry (VBM) analysis to investigate: (1) whether long-term meditators (LTMs) (<i>n</i> = 14) exhibited greater pineal gland MRI-derived signal intensity compared to a control group (<i>n</i> = 969), (2) a potential association between the estimated lifetime hours of meditation (ELHOM) and pineal gland signal intensity, and (3) whether LTMs show greater grey matter (GM) maintenance (BrainPAD) that is associated with pineal gland signal intensity. The results revealed greater pineal gland signal intensity and lower BrainPAD scores (younger brain age) in LTMs compared to controls. Exploratory analysis revealed a positive association between ELHOM and greater signal intensity in the pineal gland but not with GM maintenance as measured by BrainPAD score. However, greater pineal signal intensity and lower BrainPAD scores were correlated in LTMs. The potential mechanisms by which meditation influences pineal gland function, hormonal metabolism, and GM maintenance are discussed – in particular, melatonin's roles in sleep, immune response, inflammation modulation, and stem cell and neural regeneration.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"77 2","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpi.70033","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pineal Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpi.70033","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Growing evidence demonstrates that meditation practice supports cognitive functions, including attention and interoceptive processing, and is associated with structural changes across cortical networks, including prefrontal regions and the insula. However, the extent of subcortical morphometric changes linked to meditation practice is less appreciated. A noteworthy candidate is the pineal gland, a key producer of melatonin, which regulates circadian rhythms that augment sleep-wake patterns and may also provide neuroprotective benefits to offset cognitive decline. Increased melatonin levels, as well as increased fMRI BOLD signal in the pineal gland, have been observed in meditators versus controls. However, it is not known if long-term meditators exhibit structural changes in the pineal gland linked to the lifetime duration of practice. In the current study, we performed voxel-based morphometry (VBM) analysis to investigate: (1) whether long-term meditators (LTMs) (n = 14) exhibited greater pineal gland MRI-derived signal intensity compared to a control group (n = 969), (2) a potential association between the estimated lifetime hours of meditation (ELHOM) and pineal gland signal intensity, and (3) whether LTMs show greater grey matter (GM) maintenance (BrainPAD) that is associated with pineal gland signal intensity. The results revealed greater pineal gland signal intensity and lower BrainPAD scores (younger brain age) in LTMs compared to controls. Exploratory analysis revealed a positive association between ELHOM and greater signal intensity in the pineal gland but not with GM maintenance as measured by BrainPAD score. However, greater pineal signal intensity and lower BrainPAD scores were correlated in LTMs. The potential mechanisms by which meditation influences pineal gland function, hormonal metabolism, and GM maintenance are discussed – in particular, melatonin's roles in sleep, immune response, inflammation modulation, and stem cell and neural regeneration.

Abstract Image

冥想与松果体核磁共振成像信号强度增强和预测脑年龄降低有关
越来越多的证据表明,冥想练习支持认知功能,包括注意力和内感受处理,并与皮层网络的结构变化有关,包括前额叶区域和脑岛。然而,与冥想练习相关的皮层下形态变化的程度却鲜为人知。一个值得注意的候选者是松果体,它是褪黑激素的主要产生者,褪黑激素调节昼夜节律,增强睡眠-觉醒模式,也可能提供神经保护作用,以抵消认知能力下降。与对照组相比,在冥想者中观察到褪黑激素水平的增加,以及松果体fMRI BOLD信号的增加。然而,目前尚不清楚长期冥想者是否表现出与终生练习时间有关的松果体结构变化。在当前的研究中,我们进行了基于体素的形态测量(VBM)分析,以研究:(1)与对照组(n = 969)相比,长期冥想者(n = 14)是否表现出更大的松果体核磁共振信号强度,(2)估计终生冥想时间(ELHOM)与松果体信号强度之间的潜在关联,以及(3)长期冥想者是否表现出与松果体信号强度相关的更大的灰质(GM)维持(BrainPAD)。结果显示,与对照组相比,ltm的松果体信号强度更高,BrainPAD评分更低(脑年龄更小)。探索性分析显示,ELHOM与松果体中较大的信号强度呈正相关,但与BrainPAD评分测量的GM维持无关。然而,在ltm中,较高的松果体信号强度与较低的BrainPAD评分相关。讨论了冥想影响松果体功能、激素代谢和GM维持的潜在机制,特别是褪黑激素在睡眠、免疫反应、炎症调节、干细胞和神经再生中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Pineal Research
Journal of Pineal Research 医学-内分泌学与代谢
CiteScore
17.70
自引率
4.90%
发文量
66
审稿时长
1 months
期刊介绍: The Journal of Pineal Research welcomes original scientific research on the pineal gland and melatonin in vertebrates, as well as the biological functions of melatonin in non-vertebrates, plants, and microorganisms. Criteria for publication include scientific importance, novelty, timeliness, and clarity of presentation. The journal considers experimental data that challenge current thinking and welcomes case reports contributing to understanding the pineal gland and melatonin research. Its aim is to serve researchers in all disciplines related to the pineal gland and melatonin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信